Martinson K.D.1, Murashkin A.A.1
1Ioffe Institute, St. Petersburg, Russia
Email: martinsonkirill@mail.ru
zinc ferrite powders with a mean particle size from (5.9± 1) to (30.9± 3) nm and a crystal phase fraction from 62 % to 99 % were obtained in solution combustion conditions using citric acid as organic fuel with various oxidizer/reducer ratios. It is shown that ferrite formation starts at the oxidizer/reducer ratio of 0.50, while an almost fully X-ray amorphous sample with a mean particle size about 6 nm is formed at 0.25. A solid product containing a single phase - zinc ferrite with a mean particle size of 20-25 nm, is formed in the stoichiometric ratio region of organic fuel. The highest saturation magnetization (43.8 emu/g), residual magnetization (27.2 emu/g) and coercive force (336.2 Oe) were found in a sample synthesized with an oxidizer/reducer ratio of 1.00, which corresponds to the stoichiometric amount of citric acid in the reaction solution. A spectrophotometric survey has shown that all samples facilitated decomposition of an organic dye (rhodamine B). The highest decomposition parameters were recorded in samples containing impurity oxide phases, have the smallest particle size and high percentage of zinc oxide crystal phase. Keywords: zinc ferrite, solution combustion, citric acid, magnetic properties, photocatalytic properties.
- S.N. Pund, P.A. Nagawade, A.V. Nagawade, S.R. Thopate, A.V. Bagade. Materials Today: Proceed., 60 (3), 2194 (2022). DOI: 10.1016/j.matpr.2022.02.444
- M. Sugimoto. J. American Ceramic Society, 82 (2), 269 (1999). DOI: 10.1111/j.1551-2916.1999.tb20058.x
- J.B. Franklin, G.T. Anand, G.M. Sujitha, S.J. Sundaram, A.D. Raj, K. Kaviyarasu. Mater. Today: Proceed., 68 (3), 593 (2022). DOI: 10.1016/j.matpr.2022.08.429
- J.K. Jogi, S.K. Singhal, R. Jangir, A. Dwivedi, A.R. Tanna, R. Singh, M. Gupta, P.R. Sagdeo. J. Electron. Mater., 51, 5482 (2022). DOI: 10.1007/s11664-022-09813-2
- M. Kacki, M.S. Rylko, J.G. Hayes, C.R. Sullivan. IEEE Transactions on Power Electronics, 37 (12), 15152 (2022). DOI: 10.1109/TPEL.2022.3189671
- P. Pengdei, Z. Ning. J. Magn. Magn. Mater., 416, 256 (2016). DOI: 10.1016/j.jmmm.2016.05.018
- S.J. Salih, W.M. Mahmood. Heliyon, 9 (6), E16601 (2023). DOI: 10.1016/j.heliyon.2023.e16601
- K. Wu, J. Li, C. Zhang. Ceramics Intern., 45 (9), 11143 (2019). DOI: 10.1016/j.ceramint.2019.03.086
- P. Sahoo, P. Choudhary, S.S. Laha, A. Dixit, O.T. Mefford. Chem. Commun., 81 (59), 12065 (2023). DOI: 10.1039/D3CC01637D
- N. Maji, H.S. Dosanjh. Magnetochemistry, 9 (6), 156 (2023). DOI: 10.3390/magnetochemistry9060156
- A. Arimi, L. Megatif, L.I. Granone, R. Dillert, D.W. Bahnemann. J. Photochem. Photobiology A: Chem., 366, 118 (2018). DOI: 10.1016/j.jphotochem.2018.03.014
- S. Malik, K. Muhammad, Y. Waheed. Molecules, 28 (2), 661 (2023). DOI: 10.3390/molecules28020661
- G. Stefanic, S. Krehula, I. Stefanic. Dalton Transactions, 44 (43), 18870 (2015). DOI: 10.1039/C5DT02498F
- K.D. Martinson, I.B. Panteleev, K.A. Steshenko, V.I. Popkov. J. European Ceramic Society, 42, 4363 (2022). DOI: 10.1016/j.jeurceramsoc.2022.02.059
- S.K. Dutta, M. Akhter, J. Ahmed, M.K. Amin, P.K. Dhar. Biointerface Research Appl. Chemi., 12 (4), 4399 (2022). DOI: 10.33263/BRIAC124.43994416
- G.M. Alzoubi. J. Superconductivity Novel Magnetism, 35, 2417 (2022). DOI: 10.1007/s10948-022-06230-8
- F. Iqbal, M.I.A. Mutalib, M.S. Shaharun, M. Khan, B. Abdullah. Procedia Engineer., 148, 787 (2016). DOI: j.proeng.2016.06.563
- Y.B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana. J. Mater. Sci.: Mater. Electron., 27, 12000 (2016). DOI: 10.1007/s10854-016-5347-y
- K.D. Martinson, I.A. Cherepkova, V.V. Sokolov. Glass Phys. Chem., 44, 21 (2018). DOI: 10.1134/S1087659618010091
- P.P. Goswami, H.A. Choudhury, S. Chakma, V.S. Moholkar. Industrial Engineering Chem. Research, 52 (50), 17848 (2013). DOI: 10.1021/ie401919x
- A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan. Chem. Rev., 116 (23), 14493 (2016). DOI: 10.1021/acs.chemrev.6b00279
- E. Novitskaya, J.P. Kelly, S. Bhaduri, O.A. Graeve. Intern. Mater. Rev., 66 (3), 188 (2021). DOI: 10.1080/09506608.2020.1765603
- M. Ochmann, V. Vrba, J. Kopp, T. Ingr, O. Malina, L. Machala. Nanomaterials, 12 (17), 2987 (2022). DOI: 10.3390/nano12172987
- T.P. Oliveira, G.N. Marques, M.A.M. Castro, R.C.V. Costa, J.H.G. Rangel, S.F. Rodrigues, C.C. Santos, M.M. Oliveira. J. Mater. Res. Technol., 9 (6), 15001 (2020). DOI: 10.1016/j.jmrt.2020.10.080
- F. Riyanti, W. Purwaningrum, N. Yuliasari, S. Putri, N. Aprianti, P.L. Harianti. Turkish J. Chem., 46, 1875 (2022). DOI: 10.55730/1300-0527.3487
- S.V. Dyachenko, K.D. Martinson, I.A. Cherepkova, A.I. Zhernovoi. Russ. J. Appl. Chem., 89, 535 (2016). DOI: 10.1134/S1070427216040029
- K.D. Martinson, I.S. Kondrashkova, M.I. Chebanenko, A.S. Kiselev, T.Yu. Kiseleva, V.I. Popkov. J. Rare Earths, 40 (2), 296 (2022). DOI: 10.1016/j.jre.2021.01.001
- R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K.M. Jadhav. Mater. Res. Express, 7, 016116 (2020). DOI: 10.1088/2053-1591/ab6c9c
- D.A. Vieira, V.C.S. Diniz, D.R. Cornejo, A.C.F.M. Costa, R.H.G.A. Kiminami. Mater. Sci. Forum, 775, 415 (2014). DOI: 10.4028/www.scientific.net/MSF.775-776.415
- V.I. Popkov, K.D. Martinson, I.S. Kondrashkova, M.O. Enikeeva, V.N. Nevedomskiy, V.V. Panchuk, V.G. Semenov, M.P. Volkov, I.V. Pleshakov. J. Alloys and Compounds, 859, 157812 (2021). DOI: 10.1016/j.jallcom.2020.157812
- S.O. Aisida, I. Ahmad, T.-K. Zhao, M. Maaza, F.I. Ezema. J. Macromolecular Sci., Part B, 59 (5), 295 (2020). DOI: 10.1080/00222348.2020.1713519
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.