Photocatalytic and magnetic properties of zinc ferrite nanoparticles
Martinson K.D.1, Murashkin A.A.1
1Ioffe Institute, St. Petersburg, Russia
Email: martinsonkirill@mail.ru

PDF
zinc ferrite powders with a mean particle size from (5.9± 1) to (30.9± 3) nm and a crystal phase fraction from 62 % to 99 % were obtained in solution combustion conditions using citric acid as organic fuel with various oxidizer/reducer ratios. It is shown that ferrite formation starts at the oxidizer/reducer ratio of 0.50, while an almost fully X-ray amorphous sample with a mean particle size about 6 nm is formed at 0.25. A solid product containing a single phase - zinc ferrite with a mean particle size of 20-25 nm, is formed in the stoichiometric ratio region of organic fuel. The highest saturation magnetization (43.8 emu/g), residual magnetization (27.2 emu/g) and coercive force (336.2 Oe) were found in a sample synthesized with an oxidizer/reducer ratio of 1.00, which corresponds to the stoichiometric amount of citric acid in the reaction solution. A spectrophotometric survey has shown that all samples facilitated decomposition of an organic dye (rhodamine B). The highest decomposition parameters were recorded in samples containing impurity oxide phases, have the smallest particle size and high percentage of zinc oxide crystal phase. Keywords: zinc ferrite, solution combustion, citric acid, magnetic properties, photocatalytic properties.
  1. S.N. Pund, P.A. Nagawade, A.V. Nagawade, S.R. Thopate, A.V. Bagade. Materials Today: Proceed., 60 (3), 2194 (2022). DOI: 10.1016/j.matpr.2022.02.444
  2. M. Sugimoto. J. American Ceramic Society, 82 (2), 269 (1999). DOI: 10.1111/j.1551-2916.1999.tb20058.x
  3. J.B. Franklin, G.T. Anand, G.M. Sujitha, S.J. Sundaram, A.D. Raj, K. Kaviyarasu. Mater. Today: Proceed., 68 (3), 593 (2022). DOI: 10.1016/j.matpr.2022.08.429
  4. J.K. Jogi, S.K. Singhal, R. Jangir, A. Dwivedi, A.R. Tanna, R. Singh, M. Gupta, P.R. Sagdeo. J. Electron. Mater., 51, 5482 (2022). DOI: 10.1007/s11664-022-09813-2
  5. M. Kacki, M.S. Rylko, J.G. Hayes, C.R. Sullivan. IEEE Transactions on Power Electronics, 37 (12), 15152 (2022). DOI: 10.1109/TPEL.2022.3189671
  6. P. Pengdei, Z. Ning. J. Magn. Magn. Mater., 416, 256 (2016). DOI: 10.1016/j.jmmm.2016.05.018
  7. S.J. Salih, W.M. Mahmood. Heliyon, 9 (6), E16601 (2023). DOI: 10.1016/j.heliyon.2023.e16601
  8. K. Wu, J. Li, C. Zhang. Ceramics Intern., 45 (9), 11143 (2019). DOI: 10.1016/j.ceramint.2019.03.086
  9. P. Sahoo, P. Choudhary, S.S. Laha, A. Dixit, O.T. Mefford. Chem. Commun., 81 (59), 12065 (2023). DOI: 10.1039/D3CC01637D
  10. N. Maji, H.S. Dosanjh. Magnetochemistry, 9 (6), 156 (2023). DOI: 10.3390/magnetochemistry9060156
  11. A. Arimi, L. Megatif, L.I. Granone, R. Dillert, D.W. Bahnemann. J. Photochem. Photobiology A: Chem., 366, 118 (2018). DOI: 10.1016/j.jphotochem.2018.03.014
  12. S. Malik, K. Muhammad, Y. Waheed. Molecules, 28 (2), 661 (2023). DOI: 10.3390/molecules28020661
  13. G. Stefanic, S. Krehula, I. Stefanic. Dalton Transactions, 44 (43), 18870 (2015). DOI: 10.1039/C5DT02498F
  14. K.D. Martinson, I.B. Panteleev, K.A. Steshenko, V.I. Popkov. J. European Ceramic Society, 42, 4363 (2022). DOI: 10.1016/j.jeurceramsoc.2022.02.059
  15. S.K. Dutta, M. Akhter, J. Ahmed, M.K. Amin, P.K. Dhar. Biointerface Research Appl. Chemi., 12 (4), 4399 (2022). DOI: 10.33263/BRIAC124.43994416
  16. G.M. Alzoubi. J. Superconductivity Novel Magnetism, 35, 2417 (2022). DOI: 10.1007/s10948-022-06230-8
  17. F. Iqbal, M.I.A. Mutalib, M.S. Shaharun, M. Khan, B. Abdullah. Procedia Engineer., 148, 787 (2016). DOI: j.proeng.2016.06.563
  18. Y.B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana. J. Mater. Sci.: Mater. Electron., 27, 12000 (2016). DOI: 10.1007/s10854-016-5347-y
  19. K.D. Martinson, I.A. Cherepkova, V.V. Sokolov. Glass Phys. Chem., 44, 21 (2018). DOI: 10.1134/S1087659618010091
  20. P.P. Goswami, H.A. Choudhury, S. Chakma, V.S. Moholkar. Industrial Engineering Chem. Research, 52 (50), 17848 (2013). DOI: 10.1021/ie401919x
  21. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan. Chem. Rev., 116 (23), 14493 (2016). DOI: 10.1021/acs.chemrev.6b00279
  22. E. Novitskaya, J.P. Kelly, S. Bhaduri, O.A. Graeve. Intern. Mater. Rev., 66 (3), 188 (2021). DOI: 10.1080/09506608.2020.1765603
  23. M. Ochmann, V. Vrba, J. Kopp, T. Ingr, O. Malina, L. Machala. Nanomaterials, 12 (17), 2987 (2022). DOI: 10.3390/nano12172987
  24. T.P. Oliveira, G.N. Marques, M.A.M. Castro, R.C.V. Costa, J.H.G. Rangel, S.F. Rodrigues, C.C. Santos, M.M. Oliveira. J. Mater. Res. Technol., 9 (6), 15001 (2020). DOI: 10.1016/j.jmrt.2020.10.080
  25. F. Riyanti, W. Purwaningrum, N. Yuliasari, S. Putri, N. Aprianti, P.L. Harianti. Turkish J. Chem., 46, 1875 (2022). DOI: 10.55730/1300-0527.3487
  26. S.V. Dyachenko, K.D. Martinson, I.A. Cherepkova, A.I. Zhernovoi. Russ. J. Appl. Chem., 89, 535 (2016). DOI: 10.1134/S1070427216040029
  27. K.D. Martinson, I.S. Kondrashkova, M.I. Chebanenko, A.S. Kiselev, T.Yu. Kiseleva, V.I. Popkov. J. Rare Earths, 40 (2), 296 (2022). DOI: 10.1016/j.jre.2021.01.001
  28. R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K.M. Jadhav. Mater. Res. Express, 7, 016116 (2020). DOI: 10.1088/2053-1591/ab6c9c
  29. D.A. Vieira, V.C.S. Diniz, D.R. Cornejo, A.C.F.M. Costa, R.H.G.A. Kiminami. Mater. Sci. Forum, 775, 415 (2014). DOI: 10.4028/www.scientific.net/MSF.775-776.415
  30. V.I. Popkov, K.D. Martinson, I.S. Kondrashkova, M.O. Enikeeva, V.N. Nevedomskiy, V.V. Panchuk, V.G. Semenov, M.P. Volkov, I.V. Pleshakov. J. Alloys and Compounds, 859, 157812 (2021). DOI: 10.1016/j.jallcom.2020.157812
  31. S.O. Aisida, I. Ahmad, T.-K. Zhao, M. Maaza, F.I. Ezema. J. Macromolecular Sci., Part B, 59 (5), 295 (2020). DOI: 10.1080/00222348.2020.1713519

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru