L.М. Portsel 1, Yu.A. Astrov 1, А.N. Lodygin 1, Beregulin E.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: leonid.portsel@mail.ioffe.ru
The study investigates suitability of three-electrode semiconductor-gas-discharge system as a microreactor for plasma-chemical treatment of a semiconductor material surface. The system is composed of two discharge gaps separated with a metal grid that serves as a common electrode. A self-sustained low-energy DC Townsend discharge is formed in the first gap. Charged particles of the discharge pass through the grid meshes and move in the electric field of the second gap. Sample surface treatment takes place in the second gap due to the interaction between the charged particle flux and semiconductor. Experiments were performed in a three-electrode system filled with argon. GaAs is used as a sample. Modification of surface properties was determined using spectroscopic ellipsometry. It is shown that semiconductor irradiation by argon ions Ar+ leads to removal of an oxide layer from the surface and formation of a 5-20 nm modified near-surface layer. The layer is composed of a mixture of crystalline and amorphous GaAs. Keywords: gas dischare, GaAs semiconductor, surface property modification, ellipsomety.
- C. Pignata, D. D'Angelo, E. Fea, G. Gilli. J. Appl. Microbiol., 122, 1438 (2017). DOI: 10.1111/jam.13412
- A. Dey, A. Chroneos, N.St.J. Braithwaite, R.P. Gandhiraman, S. Krishnamurthy. Appl. Phys. Rev., 3, 021301 (2016)
- Yu.A. Astrov, V.V. Egorov, Sh.S. Kasymov, V.M. Murugov, L.G. Paritsky, S.M. Ryvkin, Yu.N. Sheremetiev. Kvantovaya elektronika, 4 (8), 1681 (1977) (in Russian)
- V.M. Marchenko, H.-G. Purwins, L.M. Portsel, Yu.A. Astrov. Semiconductor-Gas-Discharge Device for Fast Imaging in the Infrared, Physics, Engineering and Applications (Shaker Verlag, Aachen, 2016)
- Z.Lj. Petrovic, A.V. Phelps. Phys. Rev. E, 27, 2806, 2825 (1993). E.L. Gurevich, Yu.P. Raizer, H.G. Purvins. ZhTF, 76 (2), 36 (2006) (in Russian)
- L.M. Portsel, A.N. Lodygin, Yu.A. Astrov. J. Phys. D: Appl. Phys., 42, 235208 (2009)
- E.L. Gurevich, S. Kittel, R. Hergenroder, Yu.A. Astrov, L.M. Portsel, A.N. Lodygin, V.A. Tolmachev, A.V. Ankudinov. J. Phys. D: Appl. Phys., 43, 275302 (2010). DOI: 10.1088/0022-3727/43/27/275302
- M.S. Aksenov, A.Yu. Kokhanovskii, P.A. Polovodov, S.F. Devyatova, V.A. Golyashov, A.S. Kozhukhov, I.P. Prosvirin, S.E. Khandarkhaeva, A.K. Gutakovskii, N.A. Valisheva, O.E. Tereshchenko. Appl. Phys. Lett., 107, 173501 (2015)
- M.S. Aksenov, A.K. Gutakovskii, I.P. Prosvirin, D.V. Dmitriev, A.A. Nedomolkina, N.A. Valisheva. Mater. Sci. Semicond. Process., 102, 104611 (2019)
- Yu.A. Astrov, A.N. Lodygin, L.M. Portsel, A.A. Sitnikova. J. Appl. Phys., 124, 103303 (2018). DOI: 10.1063/1.5042487
- Yu.A. Astrov, V. Zhelev, J. Malinowski, S.M. Ryvkin. Phys. Status Solidi (a), 61, K127 (1980)
- T. Yuldashev, Z. Khaidarov, Sh.S. Kasymov. Uspekhi prikladnoi fiziki (in Russian), 4 (6), 580 (2016)
- F.H. Read, N.J. Bowring, P.D. Bullivant, R.R.A. Ward. Rev. Sci. Instrum., 69, 2000 (1998). DOI: 10.1063/1.1148888
- P.D. Goldan, F.L.J. Yadlowsky, E.C. Whipple Jr. J. Geophys. Res., 78, 2907 (1973)
- A.L. Ward. Phys. Rev., 112 (6), 1852 (1958)
- D.A.G. Bruggeman. Ann. Phys. (Leipzig), 24, 636 (1936)
- R.M.A. Azzam, N.M. Bashara. Ellipsometry and Polarized Light (Amsterdam, North-Holland, 1977)
- P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona. Phys. Rev. B, 35, 9174 (1987)
- S. Ozaki, S. Adachi. J. Appl. Phys., 78, 3380 (1995)
- E. Schubert, N. Razek, F. Frost, A. Schindler, B. Rauschenbach. J. Appl. Phys., 97, 023511 (2005)
- M. Erman, J.B. Theeten, P. Chambon. J. Appl. Phys., 56, 2664 (1984)
- H.D. Hagstrum. Phys. Rev., 122, 83 (1961)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.