Highly efficient supercritical fluid extraction process: solubility and pseudosolubility
Gumerov F. M.1, Zaripov Z. I.1, Nakipov R. R.1, Mazanov S. V.1, Sagdeev A. A.2
1Kazan National Research Technological University, Kazan, Russia
2Nizhnekamsk Chemical-Technological Institute (branch) of Kazan National Research Technological University, Nizhnekamsk, Russia
Email: serg989@yandex.ru

PDF
The results of an experimental study on the solubility of acetone in carbon dioxide are presented. The study was conducted along the critical isopleth with a critical concentration of the binary mixture components beyond the binodal curve using a dynamic measurement method. The pressure ranges in which the solubility exhibits regular behavior in one case and singular behavior in another have been identified. For the first time, in the asymptotic vicinity of the critical point as it is approached, the fact of an anomalous increase in solubility has been established. The prerequisites and conditions for the swelling of the component intended for extraction, which formed the basis for new concepts about the mechanism of supercritical fluid extractive separation as applied to type I-II phase behavior systems, are discussed. For the first time, an explanation of the concept of pseudosolubility is provided. According to this concept, the designated characteristic simultaneously combines, on one hand, the indicators of the target component's extraction into the extractant phase within the traditional understanding of solubility, and on the other hand, the possibility of transferring macroscopic volumes of the extractable component to the separator. This transfer is caused by its swelling in the extractor due to the dissolution of the supercritical fluid solvent into it. Experimental data on the pseudo-solubility of acetone in carbon dioxide at supercritical isobars are presented. At pressures near its critical value, the pseudosolubility significantly exceeds the values of the equilibrium solubility by multiple times. Keywords: extraction, supercritical fluid state, type of phase behavior, regime of complete miscibility, solubility, pseudosolubility.
  1. R.B. Gupta, J.-J. Shim. Solubility in supercritical carbon dioxide (CRC Press. Taylor \& Francis Group., 2007)
  2. P.H.V. Konynenburg, R.L. Scott. Philos. Trans. R. Soc., 298, 495 (1980). DOI: 10.1098/rsta.1980.0266
  3. D.F. Williams. J. Chem. Eng. Sci., 36, 1769 (1981)
  4. F.M. Gumerov, A.A. Sagdeev, D.G. Amirkhanov. Rastvorimostveshchestv v sverkhkriticheskikh flyuidnykh sredakh (LAP Lambert, Germany, 2016) (in Russian)
  5. O. Kazunari, K. Takashi. Verfahren zur herstellung eines extraktes (Patentschrift, DE 34 24 614 C2, 1985)
  6. F.M. Gumerov, V.F. Khairutdinov, Z.I. Zaripov. Theor. Found. Chem. Eng., 55 (3), 348 (2021). DOI: 10.1134/S0040579521030076
  7. V.F. Khairutdinov, F.M. Gumerov, I.Sh. Khabriev, R.F. Gabitov, M.I. Farakhov, F.R. Gabitov, Z.I. Zaripov. Ecology and Industry of Russia, 24 (9), 4 (2020). DOI: 10.18412/1816-0395-2020-9-4-10
  8. F.M. Gumerov, Z.I. Zaripov, V.F. Khairutdinov, D.I. Sagdeev. Theor. Found. Chem. Eng., 57 (1), 45 (2023). DOI: 10.1134/S0040579523010050
  9. F.M. Gumerov. Sverkhkriticheskie flyuidnye tekhnologii, uchebnik dlya vuzov (Dan,SPb., 2022) (in Russian)
  10. N.V. Menshutina. Chem. J., 9, 34 (2019)
  11. A.Z. Patashinsky, V.L. Pokrovsky. Fluktuatsionnaya teoriya fazovykh perekhodov (Nauka, M., 1975) (in Russian)
  12. I.L. Fabelinsky. Molekulyarnoe rasseyanie sveta (Nauka, M., 1965) (in Russian)
  13. G. Stenly. Fazovye perekhody i kriticheskie yavleniya (Mir, M., 1973) (in Russian)
  14. T. Cummins, E. Pike. Spektroskopiya opticheskogo smesheniya i korrelyatsiaya photonov (Mir, M., 1978) (in Russian)
  15. M.A. Anisimov. Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Nauka, M., 1987) (in Russian)
  16. D.S. Cannell, J.H. Lunacek. J. de Physique, 33, 1 (1972)
  17. M.A. Anisimov, A.V. Voronel, E.E. Gorodetsky. ZhETF, 60 (3), 1117 (1971) (in Russian)
  18. A.H. Ewald, W.B. Jepson, J.S. Rowlinson. Disc. Faraday Soc., 19, 238 (1953)
  19. E.U. Franck. Z. Physik. Chem., 6, 345 (1956)
  20. J. Chrastil. J. Phys. Chem., 86, 3016 (1982). DOI: 10.1021/j100212a041
  21. C.A. Eckert, D.H. Ziger, K.P. Johnston, T.K. Ellison. Fluid Phase Equilib., 14, 167 (1983). DOI: 10.1016/0378-3812(83)80122-8
  22. S. Kim, K.P. Johnston. Ind. Eng. Chem. Res., 26, 1206 (1987). DOI: 10.1021/ie00066a024
  23. O. Kajimoto, M. Futakami, T. Kobayashi, K. Yamasaki. J. Phys. Chem., 92, 1347 (1988). DOI: 10.1021/j100316a066
  24. I.B. Petsche, P.G. Debenedetti. J. Chem. Phys., 91, 7075 (1989). DOI: 10.1063/1.457325
  25. H.D. Cochran, L.L. Lee. Solvation structure in supercritical fluid mixtures based on molecular distribution functions. Ch. 3. in Johnston K.P., Penninger J.M.L. Supercritical science and technology (ASC Symp. Series, Washington, 1989)
  26. J. Freitag, S. Kato. J. of Supercritical Fluids, 43, 398 (2008). DOI: 10.1016/j.supflu.2007.07.007
  27. M.G. Gonikberg. Vysokie i sverkhkriticheskie davleniya v khimii (Nauka, M., 1968) (in Russian)
  28. W.-L. Weng, M.-J. Lee. Ind. Eng. Chem. Res., 31, 2469 (1992). DOI: 10.1021/ie00012a022
  29. S. Peper, V. Haverkamp, R. Dohrn. J. Supercritical Fluids, 55, 537 (2010). DOI: 10.1016/j.supflu.2010.09.014
  30. T. Gamse, R. Marr. J. Chem. Eng. Data, 46, 117 (2001). DOI: 10.1021/je990306p
  31. M.J. Lazzaroni, D. Bush, J.S. Brown, C.A. Eckert. J. Chem. Eng. Data, 50 (1), 60 (2005). DOI: 10.1021/je0498560
  32. L.F. Zilnik, M. Grilc, J. Levec, S. Peper, R. Dohrn. Fluid Phase Equilibria, 419, 31 (2016). DOI: 10.1016/j.fluid.2016.03.010
  33. C.-Y. Day, C.J. Chang, C.-Y. Chen. J. Chem. Eng. Data, 41 (4), 839 (1996). DOI: 10.1021/je960049d
  34. V. Margon, U.S. Agarwal, C.J. Peters, G. de Wit, J.M.N. van Kasteren, P.J. Lemstra. J. Supercritical Fluids, 27, 25 (2003). DOI: 10.1016/S0896-8446(02)00214-0
  35. J.A. Lopes, D. Chouchi, M.N. da Ponte. J. Chem. Eng. Data, 48 (4), 847 (2003). DOI: 10.1021/je025600n
  36. M. Skerget, D. Cucek, Z. Knez. J. Supercritical Fluids, 95, 129 (2014). DOI: 10.1016/j.supflu.2014.08.019
  37. B.N. Burkhanov, A.A. Usarov, F.N. Temirov.Golden Brain. Multidisciplinary Sci., 1 (10), 115 (2023)
  38. R.A. Kayumov, A.T. Galimova, A.A. Sagdeev, A.A. Petukhov, F.M. Gumerov. Sverkhkriticheskie flyuidy. Teoriya i praktika, 7 (1), 3 (2012) (in Russian)
  39. T. Adrian, G. Maurer. J. Chem. Eng. Data, 42 (4), 668 (1997). DOI: 10.1021/je970011g
  40. C.J. Chang, C.-Y. Day, C.-M. Ko, K.-L. Chiu. Fluid Phase Equilib., 131, 243 (1997). DOI: 10.1016/s0378-3812(96)03208-6
  41. E.W. Lemmon, M.L. Huber, M.O. Mc Linden. NIST Standard Reference Fluid Thermodynamic and Transport Properties (REFPROP, version 10.0. Standard Reference Data Program. National Institute of Standards and Technology, Gaithershung, 2018)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru