Highly efficient supercritical fluid extraction process: solubility and pseudosolubility
Gumerov F. M.1, Zaripov Z. I.1, Nakipov R. R.1, Mazanov S. V.1, Sagdeev A. A.2
1Kazan National Research Technological University, Kazan, Russia
2Nizhnekamsk Chemical-Technological Institute (branch) of Kazan National Research Technological University, Nizhnekamsk, Russia
Email: serg989@yandex.ru
The results of an experimental study on the solubility of acetone in carbon dioxide are presented. The study was conducted along the critical isopleth with a critical concentration of the binary mixture components beyond the binodal curve using a dynamic measurement method. The pressure ranges in which the solubility exhibits regular behavior in one case and singular behavior in another have been identified. For the first time, in the asymptotic vicinity of the critical point as it is approached, the fact of an anomalous increase in solubility has been established. The prerequisites and conditions for the swelling of the component intended for extraction, which formed the basis for new concepts about the mechanism of supercritical fluid extractive separation as applied to type I-II phase behavior systems, are discussed. For the first time, an explanation of the concept of pseudosolubility is provided. According to this concept, the designated characteristic simultaneously combines, on one hand, the indicators of the target component's extraction into the extractant phase within the traditional understanding of solubility, and on the other hand, the possibility of transferring macroscopic volumes of the extractable component to the separator. This transfer is caused by its swelling in the extractor due to the dissolution of the supercritical fluid solvent into it. Experimental data on the pseudo-solubility of acetone in carbon dioxide at supercritical isobars are presented. At pressures near its critical value, the pseudosolubility significantly exceeds the values of the equilibrium solubility by multiple times. Keywords: extraction, supercritical fluid state, type of phase behavior, regime of complete miscibility, solubility, pseudosolubility.
- R.B. Gupta, J.-J. Shim. Solubility in supercritical carbon dioxide (CRC Press. Taylor \& Francis Group., 2007)
- P.H.V. Konynenburg, R.L. Scott. Philos. Trans. R. Soc., 298, 495 (1980). DOI: 10.1098/rsta.1980.0266
- D.F. Williams. J. Chem. Eng. Sci., 36, 1769 (1981)
- F.M. Gumerov, A.A. Sagdeev, D.G. Amirkhanov. Rastvorimostveshchestv v sverkhkriticheskikh flyuidnykh sredakh (LAP Lambert, Germany, 2016) (in Russian)
- O. Kazunari, K. Takashi. Verfahren zur herstellung eines extraktes (Patentschrift, DE 34 24 614 C2, 1985)
- F.M. Gumerov, V.F. Khairutdinov, Z.I. Zaripov. Theor. Found. Chem. Eng., 55 (3), 348 (2021). DOI: 10.1134/S0040579521030076
- V.F. Khairutdinov, F.M. Gumerov, I.Sh. Khabriev, R.F. Gabitov, M.I. Farakhov, F.R. Gabitov, Z.I. Zaripov. Ecology and Industry of Russia, 24 (9), 4 (2020). DOI: 10.18412/1816-0395-2020-9-4-10
- F.M. Gumerov, Z.I. Zaripov, V.F. Khairutdinov, D.I. Sagdeev. Theor. Found. Chem. Eng., 57 (1), 45 (2023). DOI: 10.1134/S0040579523010050
- F.M. Gumerov. Sverkhkriticheskie flyuidnye tekhnologii, uchebnik dlya vuzov (Dan,SPb., 2022) (in Russian)
- N.V. Menshutina. Chem. J., 9, 34 (2019)
- A.Z. Patashinsky, V.L. Pokrovsky. Fluktuatsionnaya teoriya fazovykh perekhodov (Nauka, M., 1975) (in Russian)
- I.L. Fabelinsky. Molekulyarnoe rasseyanie sveta (Nauka, M., 1965) (in Russian)
- G. Stenly. Fazovye perekhody i kriticheskie yavleniya (Mir, M., 1973) (in Russian)
- T. Cummins, E. Pike. Spektroskopiya opticheskogo smesheniya i korrelyatsiaya photonov (Mir, M., 1978) (in Russian)
- M.A. Anisimov. Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Nauka, M., 1987) (in Russian)
- D.S. Cannell, J.H. Lunacek. J. de Physique, 33, 1 (1972)
- M.A. Anisimov, A.V. Voronel, E.E. Gorodetsky. ZhETF, 60 (3), 1117 (1971) (in Russian)
- A.H. Ewald, W.B. Jepson, J.S. Rowlinson. Disc. Faraday Soc., 19, 238 (1953)
- E.U. Franck. Z. Physik. Chem., 6, 345 (1956)
- J. Chrastil. J. Phys. Chem., 86, 3016 (1982). DOI: 10.1021/j100212a041
- C.A. Eckert, D.H. Ziger, K.P. Johnston, T.K. Ellison. Fluid Phase Equilib., 14, 167 (1983). DOI: 10.1016/0378-3812(83)80122-8
- S. Kim, K.P. Johnston. Ind. Eng. Chem. Res., 26, 1206 (1987). DOI: 10.1021/ie00066a024
- O. Kajimoto, M. Futakami, T. Kobayashi, K. Yamasaki. J. Phys. Chem., 92, 1347 (1988). DOI: 10.1021/j100316a066
- I.B. Petsche, P.G. Debenedetti. J. Chem. Phys., 91, 7075 (1989). DOI: 10.1063/1.457325
- H.D. Cochran, L.L. Lee. Solvation structure in supercritical fluid mixtures based on molecular distribution functions. Ch. 3. in Johnston K.P., Penninger J.M.L. Supercritical science and technology (ASC Symp. Series, Washington, 1989)
- J. Freitag, S. Kato. J. of Supercritical Fluids, 43, 398 (2008). DOI: 10.1016/j.supflu.2007.07.007
- M.G. Gonikberg. Vysokie i sverkhkriticheskie davleniya v khimii (Nauka, M., 1968) (in Russian)
- W.-L. Weng, M.-J. Lee. Ind. Eng. Chem. Res., 31, 2469 (1992). DOI: 10.1021/ie00012a022
- S. Peper, V. Haverkamp, R. Dohrn. J. Supercritical Fluids, 55, 537 (2010). DOI: 10.1016/j.supflu.2010.09.014
- T. Gamse, R. Marr. J. Chem. Eng. Data, 46, 117 (2001). DOI: 10.1021/je990306p
- M.J. Lazzaroni, D. Bush, J.S. Brown, C.A. Eckert. J. Chem. Eng. Data, 50 (1), 60 (2005). DOI: 10.1021/je0498560
- L.F. Zilnik, M. Grilc, J. Levec, S. Peper, R. Dohrn. Fluid Phase Equilibria, 419, 31 (2016). DOI: 10.1016/j.fluid.2016.03.010
- C.-Y. Day, C.J. Chang, C.-Y. Chen. J. Chem. Eng. Data, 41 (4), 839 (1996). DOI: 10.1021/je960049d
- V. Margon, U.S. Agarwal, C.J. Peters, G. de Wit, J.M.N. van Kasteren, P.J. Lemstra. J. Supercritical Fluids, 27, 25 (2003). DOI: 10.1016/S0896-8446(02)00214-0
- J.A. Lopes, D. Chouchi, M.N. da Ponte. J. Chem. Eng. Data, 48 (4), 847 (2003). DOI: 10.1021/je025600n
- M. Skerget, D. Cucek, Z. Knez. J. Supercritical Fluids, 95, 129 (2014). DOI: 10.1016/j.supflu.2014.08.019
- B.N. Burkhanov, A.A. Usarov, F.N. Temirov.Golden Brain. Multidisciplinary Sci., 1 (10), 115 (2023)
- R.A. Kayumov, A.T. Galimova, A.A. Sagdeev, A.A. Petukhov, F.M. Gumerov. Sverkhkriticheskie flyuidy. Teoriya i praktika, 7 (1), 3 (2012) (in Russian)
- T. Adrian, G. Maurer. J. Chem. Eng. Data, 42 (4), 668 (1997). DOI: 10.1021/je970011g
- C.J. Chang, C.-Y. Day, C.-M. Ko, K.-L. Chiu. Fluid Phase Equilib., 131, 243 (1997). DOI: 10.1016/s0378-3812(96)03208-6
- E.W. Lemmon, M.L. Huber, M.O. Mc Linden. NIST Standard Reference Fluid Thermodynamic and Transport Properties (REFPROP, version 10.0. Standard Reference Data Program. National Institute of Standards and Technology, Gaithershung, 2018)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.