Automated system for measuring the surface shape of large flat an cylindrical mirrors using a Fizeau type interferometer
E.I. Glushkov1, I.V. Malyshev1, A.I. Nikolaev1, E.V. Petrakov1, N.I. Chkhalo1, R.A. Shaposhnikov1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: eglushkov@ipmras.ru
An automated system for measuring the surface shape of mirrors with dimensions larger than the Fizeau interferometer aperture and cylindrical mirrors using the Fizeau interferometer is described. The system is based on the Zygo Verifire interferometer with an 100 mm aperture. A sample is placed on a motorized translation stage system designed to provide linear motion along the interferometer aperture and tilting about the axes perpendicular to the optical axis of the interferometer, and movements necessary to perform measurements using a subaperture cross-linking technique. Cross-linking is performed at the end of measurements using an overlap matrix technique. The system made it possible to define the systematic measurement error, including the reference surface error, using a unidirectional multi-shifted method, to consider the error during measurements, and perform measurements with a repeatability of 15 pm and subnanometer accuracy. Keywords: Fizeau interferometer, high-coherence interferometry, subapertures, automated 3D system, Kirkpatrick-Baez nanofocusing system.
- Y. Wang, F. Xie, S. Ma, L. Dong. Opt. Lasers Engin., 93, 164 (2017). DOI: 10.1016/j.optlaseng.2017.02.004
- A. Vivo, B. Lantelme, R. Baker, R. Barrett. Rev. Sci. Instrum., 87 (5), 051908 (2016). DOI: 10.1063/1.4950745
- M. Bray. SPIE, 3739, 259 (1999). DOI: 10.1117/12.360153
- A. Rommeveaux, M. Thomasset, D. Cocco. In: Modern Developments in X-ray and Neutron Optics (Berlin, Heidelberg: Springer Berlin Heidelberg, 2008), p. 181--191. DOI: 10.1007/978-3-540-74561-7_10
- F. Siewert, T. Noll, T. Schlegel, T. Zeschke, H. Lammert. AIP Conf. Proceed., 705 (1), 847 (2004). DOI: 10.1063/1.1757928
- Y. Shi, X. Xu, Q. Huang, H. Wang, A. Li, L. Zhang, Z. Wang. SPIE, 10385, 143 (2017). DOI: 10.1117/12.2273793
- L. Huang, J. Xue, B. Gao, M. Idir. Opt. Express, 26 (8), 9882 (2018). DOI: 10.1364/oe.26.009882
- H. Yumoto, T. Koyama, S. Matsuyama, K. Yamauchi, H. Ohashi. Rev. Sci. Instrum., 87 (5), 051905 (2016). DOI: 10.1063/1.4950714
- M. Otsubo, K. Okada, J. Tsujiuchi. Opt. Engineer., 33 (2), 608 (1994). DOI: https://doi.org/10.1117/12.152248
- I. Powell, E. Goulet. Appl. Optics, 37 (13), 2579 (1998). DOI: 10.1364/AO.37.002579
- P.B. Keenan. SPIE, 429, 2 (1983). DOI: 10.1117/12.936333
- B.S. Fritz. Opt. Engineer., 23 (4), 379 (1984). DOI: 10.1117/12.7973304
- A. Kochetkov, A. Shaykin, I. Yakovlev, E. Khazanov, A. Cheplakov, B. Wang, Y. Jin, S. Liu, J. Shao. Opt. Express, 33 (6), 13673 (2025). DOI: 10.1364/OE.551097
- G. Zhou, J. Wang, W. Lei, X. Dong, J. Wang. Appl. Optics, 63 (8), 2086 (2024). DOI: 10.1364/AO.516190
- Z. Guang, L. Weizheng, D. Xiaohao, W. Jie. Laser Optoelectron. Progress, 60 (23), 2312001 (2023). DOI: 10.3788/LOP222992
- E.V. Petrakov, N.I. Chkhalo, A.K. Chernyshev, E.I. Glushkov. Opt. Engineer., 63 (11), 114104-1 (2024). DOI: 10.1117/1.OE.63.11.114104
- Ya.V. Zubavichus. Tekhnologicheskaya infrastruktura sibirskogo kol'tsevogo istichnika fotonov "SKIF". T. 1. Eksperimentalnye stantsii pervoi ocheredi i Laboratorny kompleks (In-t kataliza im. G.K. Boreskova SO RAN, Novosibirsk, 2022) (in Russian)
- Ya.V. Rakshun, Yu.V. Khomyakov, E.I. Glushkov, A.S. Gogolev, M.V. Gorbachev, A.V. Dar'in, F.A. Dar'in, I.P. Dolbnya, S.V. Rashchenko, V.A. Tchernov, N.I. Chkhalo, M.R. Sharafutdinov. Izvestiya TPU. Inzhiniring georesursov, 336 (5), 229 (2025).(in Russian) DOI: 10.18799/24131830/2025/5/5122
- V.A. Chernov, I.A. Bataev, Y.V. Rakshun, Y.V. Khomyakov, M.V. Gorbachev, A.E. Trebushinin, N.I. Chkhalo, D.A. Krasnorutskiy, V.S. Naumkin, A.N. Sklyarov, N.A. Mezentsev, A.M. Korsunsky, I.P. Dolbnya. Rev. Sci. Instrum., 94 (1), 013305 (2023). DOI: 10.1063/5.0103481
- S.V. Rashchenko, M.A. Skamarokha, G.N. Baranov, Y.V. Zubavichus, I.V. Rakshun. AIP Conf. Proceed., 2299 (1), 060001 (2020). DOI: 10.1063/5.0030346
- N.I. Chkhalo, S.A. Garakhin, I.V. Malyshev, V.N. Polkovnikov, M.N. Toropov, N.N. Salashchenko, B.A. Ulasevich, Ya.V. Rakshun, V.A. Chernov, I.P. Dolbnya, S.V. Raschenko. ZhTF, 92 (8), 1261 (2022) (in Russian). DOI: 10.21883/JTF.2022.08.52794.100-22
- E.I. Glushkov, I.V. Malyshev, E.V. Petrakov, N.I. Chkhalo, Yu.V. Khomyakov, Ya.V. Rakshun, V.A. Chernov, I.P. Dolbnya. J. Surf. Investig., 17 (1), S233 (2023). DOI: 10.1134/S1027451023070133
- Electronic source. Available at: https://www.standa.lt/
- M. Erlong, G. Yongqiang. Acta Optica Sinica, 31 (12), 1212008 (2011). DOI: 10.3788/aos201131.1212008
- A. Vivo, R. Barrett. SPIE, 10385, 149 (2017). DOI: 10.1117/12.2274745
- P. de Groot. Appl. Opt., 44 (33), 7062 (2005). DOI: 10.1364/AO.44.007062
- C.B. Kreischer. SPIE, 8884, 189 (2013). DOI: 10.1117/12.2029324
- A. Erko, M. Idir, T. Krist, A. Michette. In: Modern developments in X-ray and neutron optics, 137 (Springer, Berlin, 2008), DOI: 10.1007/978-3-540-74561-7
- N. Otsu. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62 (1979). DOI: 10.1109/TSMC.1979.4310076
- K. Zuiderveld. Graphic Gems. Contrast Limited Adaptive Histogram Equalization (Academic Press Professional, San Diego, 1994), p. 474--485. DOI: 10.1016/B978-0-12-336156-1.50061-6
- M.B. Da Silva, S.G. Alcock, I.T. Nistea, K. Sawhney. Opt. Lasers in Engineer., 161, 107192 (2023). DOI: 10.1016/j.optlaseng.2022.107192
- H. Yumoto, S. Matsuyama, H. Mimura, K. Yamauchi, H. Ohashi. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 710, 2 (2013). DOI: 10.1016/j.nima.2012.10.126
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.