Khomyakov Yu.V.
1,2, Meshkov O.I.
2, Nazmov V.P.
2,3, Rakshun Ya.V.
2,4, Chernov V. A.
2, Chkhalo N.I.
51SRF "SKIF", Koltsovo, Russia
2 Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
4Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
5Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: yu.v.khomyakov@yandex.ru
This paper briefly describes some methods for measuring ultra-low emittance of an electron beam using hard X-rays. It is shown that a combination of diagnostic methods eliminates the influence of errors introduced by individual X-ray optical components. Modeling of radiation beams has been performed in accordance with the proposed schemes for measuring emittance. For the most conservative scheme, a pinhole camera, achievable resolution is estimated to be 3.7 μm. An optical design for a specialized diagnostic beamline of the SRF "SKIF" has been proposed. Keywords: synchrotron radiation, hard X-rays, electron emittance, pinhole, speckle pattern, Billet lens, Young experiment, Young interferometer, Billet interferometer, pinhole camera, Kirkpatrick-Baez mirrors.
- G. Baranov, A. Bogomyagkov, I. Morozov, S. Sinyatkin, E. Levichev. Phys. Rev. Accel. Beams, 24 (12), 120704 (2021). DOI: 10.1103/PhysRevAccelBeams.24.120704
- P. Willmott. An introduction to synchrotron radiation: techniques and applications (John Wiley \& Sons, 2019), DOI: 10.1002/9781119280453
- C. Thomas, G. Rehm, I. Martin, R. Bartolini. Phys. Rev. Spec. Top. Accel. Beams, 13 (2), 022805 (2010). DOI: 10.1103/PhysRevSTAB.13.022805
- P. Elleaume, C. Fortgang, C. Penel, E. Tarazona. J. Synchrotron Radiat., 2 (5), 209 (1995). DOI: 10.1107/S0909049595008685
- H. Sakai, M. Fujisawa, K. Iida, I. Ito, H. Kudo, N. Nakamura, K. Shinoe, T. Tanaka. Phys. Rev. Spec. Top. Accel. Beams, 10 (4), 042801 (2007). DOI: 10.1103/PhysRevSTAB.10.042801
- T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Gunzler, C. Schroer, B. Lengeler. Nucl. Instrum. Methods Phys. Res. A, 467, 248 (2001). DOI: 10.1016/S0168-9002(01)00284-4
- T.R. Renner, H.A. Padmore, R. Keller. Rev. Sci. Instrum., 67 (9), 3368 (1996). DOI: 10.1063/1.1147369
- D.C. Zhu, J.H. Yue, Y.F. Sui, D.H. Ji, J.S. Cao, K.R. Ye, S.Q. Tian, J. Chen, Y.B. Leng. Nucl. Sci. Tech., 29, 148.1 (2018). DOI: 10.1007/s41365-018-0477-y
- V. Nazmov, M. Kluge, A. Last, F. Marschall, J. Mohr, H. Vogt, R. Simon. Microsyst. Technol., 20 (10), 2031 (2014). DOI: 10.1007/s00542-013-2056-9
- W. Leitenberger, H. Wendrock, L. Bischoff, T. Weitkamp. J. Synchrotron Radiat., 11 (2), 190 (2005). DOI: 10.1107/S0909049503029169
- L. Assoufid, X. Shi, S. Marathe, E. Benda, M.J. Wojcik, K. Lang, R. Xu, W. Liu, A.T. Macrander, J.Z. Tischler. Rev. Sci. Instrum., 87 (5), 052004 (2016). DOI: 10.1063/1.4950775
- Y. Kashyap, H. Wang, K. Sawhney. Phys. Rev. A, 92 (3), 033842 (2015). DOI: 10.1103/PhysRevA.92.033842
- M. Siano, B. Paroli, M.A.C. Potenza, L. Teruzzi. Phys. Rev. Accel. Beams, 25 (5), 052801 (2022). DOI: 10.1103/PhysRevAccelBeams.25.052801
- J. Breunlin, Angstrem. Andersson, N. Milas, A. Saa Hernandez, V. Schlott. Nucl. Instrum. Methods Phys. Res. A, 803, 55 (2015). DOI: 10.1016/j.nima.2015.09.032
- E.J. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings. Synchrotron Light Sources and Free-Electron Lasers (Springer, 2020). DOI: 10.1007/978-3-030-23201-6
- P.F. Tavares, S.C. Leemann, M. Sjostrom, Angstrem. Andersson. J. Synchrotron Radiat., 21 (5), 862 (2014). DOI: 10.1107/S1600577514011503
- L. Liu, N. Milas, A.H. Mukai, X.R. Resende, F.H. de Sa. J. Synchrotron Radiat., 21 (5), 904 (2014). DOI: 10.1107/S1600577514011928
- G. Kube. Proc. DIPAC, 35, 6 (2007)
- A. Trebushinin, G. Geloni, Y. Rakshun, S. Serkez. Optica, 9 (8), 842 (2022). DOI: 10.1364/OPTICA.460902
- A. Trebushinin, G. Geloni, S. Serkez, R. Khubbutdinov, E. Saldin. Phys. Rev. Accel. Beams, 27 (3), 032802 (2024). DOI: 10.1103/PhysRevAccelBeams.27.032802
- G. Geloni, E. Saldin, E. Schneidmiller, M. Yurkov. Statistical optics approach to the design of beamlines for synchrotron radiation (2006), arXiv preprint physics/0603269
- N. Samadi, X. Shi, L. Dallin, D. Chapman. Phys. Rev. Accel. Beams, 23 (2), 024801 (2020). DOI: 10.1103/PhysRevAccelBeams.23.024801
- V.P. Nazmov, E.F. Reznikova, A. Somogyi, Ju. Mohr, V. Saile. Proc. SPIE, 5539, 235 (2004). DOI: 10.1117/12.562615
- V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, J. Gottert. Nucl. Instrum. Methods Phys. Res. A, 582 (1), 120 (2007). DOI: 10.1016/j.nima.2007.08.076
- E. Pestov, A.K. Chernyshev, M.S. Mikhailenko, M.V. Zorina, E.I. Glushkov, E.V. Petrakov, I.V. Malyshev, N.I. Chkhalo, D.G. Reunov. Appl. Opt., 64 (4), 837 (2025). DOI: 10.1364/AO.542363
- A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M.B. Grigoriev, T. Roth, G. Vaughan, C. Detlefs. Phys. Rev. Lett., 103 (6), 064801 (2009). DOI: 10.1103/PhysRevLett.103.064801
- O.V. Chubar. IEEE Proc. Part. Accel. Conf., 4, 2447 (1995). DOI: 10.1109/PAC.1995.505579
- M. Born, E. Wolf. Principles of Optics, 7th ed. (Cambridge University Press, 1999)
- T. Naito, T. Mitsuhashi. Phys. Rev. ST Accel. Beams, 9 (12), 122802 (2006). DOI: 10.1103/PhysRevSTAB.9.122802
- K.S. Morgan, D.M. Paganin, K.K.W. Siu. Appl. Phys. Lett., 100 (12), 124102 (2012). DOI: 10.1063/1.3694918
- R. Cerbino, L. Peverini, M.A.C. Potenza, A. Robert, P. Bosecke, M. Giglio. Nat. Phys., 4 (3), 238 (2008). DOI: 10.1038/nphys837
- T. Tanaka. J. Synchrotron Radiat., 28 (4), 1267 (2021). DOI: 10.1107/S1600577521004100
- M.S.D. Rio, N. Canestrari, F. Jiang, F. Cerrina. J. Synchrotron Radiat., 18 (5), 708 (2011). DOI: 10.1107/S0909049511026306
- M.S.D. Rio, L. Rebuffi. AIP Conf. Proc., 2054 (1), 060081 (2019). DOI: 10.1063/1.5084712
- V. Nazmov, E. Reznikova, J. Mohr, V. Saile, L. Vincze, B. Vekemans, S. Bohic, A. Somogyi. J. Micromech. Microeng., 21 (1), 015020 (2010). DOI: 10.1088/0960-1317/21/1/015020
- V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, V. Saile. Microsyst. Technol., 10, 716 (2004). DOI: 10.1007/s00542-004-0433-0
- M. Simon, E. Reznikova, V. Nazmov, A. Last. Microsyst. Technol., 14 (9-11), 1727 (2008). DOI: 10.1007/s00542-008-0618-z
- E.I. Glushkov, A.A. Akhsakhalyan, P.A. Veprev, I.G. Zabrodin, M.V. Zorina, I.V. Malyshev, M.S. Mikhailenko, A.E. Pestov, E.V. Petrakov, R.S. Pleshkov, V.N. Polkovnikov, D.G. Reunov, A.B. Ulasevich, A.K. Chernyshov, N.I. Chkhalo, R.A. Shaposhnikov, Ya.V. Rakshun, Yu.V. Khomyakov, V.A. Chernov. ZhTF, (in Russian) 95 (10), (2025)
- K. Klementiev, R. Chernikov. Proc. SPIE, 9209, 60 (2014). DOI: 10.1117/12.2061400
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.