Electron beam diagnostics using hard X-rays at the SRF SKIF"
Khomyakov Yu.V. 1,2, Meshkov O.I.2, Nazmov V.P.2,3, Rakshun Ya.V. 2,4, Chernov V. A.2, Chkhalo N.I.5
1SRF "SKIF", Koltsovo, Russia
2 Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
4Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
5Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: yu.v.khomyakov@yandex.ru

PDF
This paper briefly describes some methods for measuring ultra-low emittance of an electron beam using hard X-rays. It is shown that a combination of diagnostic methods eliminates the influence of errors introduced by individual X-ray optical components. Modeling of radiation beams has been performed in accordance with the proposed schemes for measuring emittance. For the most conservative scheme, a pinhole camera, achievable resolution is estimated to be 3.7 μm. An optical design for a specialized diagnostic beamline of the SRF "SKIF" has been proposed. Keywords: synchrotron radiation, hard X-rays, electron emittance, pinhole, speckle pattern, Billet lens, Young experiment, Young interferometer, Billet interferometer, pinhole camera, Kirkpatrick-Baez mirrors.
  1. G. Baranov, A. Bogomyagkov, I. Morozov, S. Sinyatkin, E. Levichev. Phys. Rev. Accel. Beams, 24 (12), 120704 (2021). DOI: 10.1103/PhysRevAccelBeams.24.120704
  2. P. Willmott. An introduction to synchrotron radiation: techniques and applications (John Wiley \& Sons, 2019), DOI: 10.1002/9781119280453
  3. C. Thomas, G. Rehm, I. Martin, R. Bartolini. Phys. Rev. Spec. Top. Accel. Beams, 13 (2), 022805 (2010). DOI: 10.1103/PhysRevSTAB.13.022805
  4. P. Elleaume, C. Fortgang, C. Penel, E. Tarazona. J. Synchrotron Radiat., 2 (5), 209 (1995). DOI: 10.1107/S0909049595008685
  5. H. Sakai, M. Fujisawa, K. Iida, I. Ito, H. Kudo, N. Nakamura, K. Shinoe, T. Tanaka. Phys. Rev. Spec. Top. Accel. Beams, 10 (4), 042801 (2007). DOI: 10.1103/PhysRevSTAB.10.042801
  6. T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Gunzler, C. Schroer, B. Lengeler. Nucl. Instrum. Methods Phys. Res. A, 467, 248 (2001). DOI: 10.1016/S0168-9002(01)00284-4
  7. T.R. Renner, H.A. Padmore, R. Keller. Rev. Sci. Instrum., 67 (9), 3368 (1996). DOI: 10.1063/1.1147369
  8. D.C. Zhu, J.H. Yue, Y.F. Sui, D.H. Ji, J.S. Cao, K.R. Ye, S.Q. Tian, J. Chen, Y.B. Leng. Nucl. Sci. Tech., 29, 148.1 (2018). DOI: 10.1007/s41365-018-0477-y
  9. V. Nazmov, M. Kluge, A. Last, F. Marschall, J. Mohr, H. Vogt, R. Simon. Microsyst. Technol., 20 (10), 2031 (2014). DOI: 10.1007/s00542-013-2056-9
  10. W. Leitenberger, H. Wendrock, L. Bischoff, T. Weitkamp. J. Synchrotron Radiat., 11 (2), 190 (2005). DOI: 10.1107/S0909049503029169
  11. L. Assoufid, X. Shi, S. Marathe, E. Benda, M.J. Wojcik, K. Lang, R. Xu, W. Liu, A.T. Macrander, J.Z. Tischler. Rev. Sci. Instrum., 87 (5), 052004 (2016). DOI: 10.1063/1.4950775
  12. Y. Kashyap, H. Wang, K. Sawhney. Phys. Rev. A, 92 (3), 033842 (2015). DOI: 10.1103/PhysRevA.92.033842
  13. M. Siano, B. Paroli, M.A.C. Potenza, L. Teruzzi. Phys. Rev. Accel. Beams, 25 (5), 052801 (2022). DOI: 10.1103/PhysRevAccelBeams.25.052801
  14. J. Breunlin, Angstrem. Andersson, N. Milas, A. Saa Hernandez, V. Schlott. Nucl. Instrum. Methods Phys. Res. A, 803, 55 (2015). DOI: 10.1016/j.nima.2015.09.032
  15. E.J. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings. Synchrotron Light Sources and Free-Electron Lasers (Springer, 2020). DOI: 10.1007/978-3-030-23201-6
  16. P.F. Tavares, S.C. Leemann, M. Sjostrom, Angstrem. Andersson. J. Synchrotron Radiat., 21 (5), 862 (2014). DOI: 10.1107/S1600577514011503
  17. L. Liu, N. Milas, A.H. Mukai, X.R. Resende, F.H. de Sa. J. Synchrotron Radiat., 21 (5), 904 (2014). DOI: 10.1107/S1600577514011928
  18. G. Kube. Proc. DIPAC, 35, 6 (2007)
  19. A. Trebushinin, G. Geloni, Y. Rakshun, S. Serkez. Optica, 9 (8), 842 (2022). DOI: 10.1364/OPTICA.460902
  20. A. Trebushinin, G. Geloni, S. Serkez, R. Khubbutdinov, E. Saldin. Phys. Rev. Accel. Beams, 27 (3), 032802 (2024). DOI: 10.1103/PhysRevAccelBeams.27.032802
  21. G. Geloni, E. Saldin, E. Schneidmiller, M. Yurkov. Statistical optics approach to the design of beamlines for synchrotron radiation (2006), arXiv preprint physics/0603269
  22. N. Samadi, X. Shi, L. Dallin, D. Chapman. Phys. Rev. Accel. Beams, 23 (2), 024801 (2020). DOI: 10.1103/PhysRevAccelBeams.23.024801
  23. V.P. Nazmov, E.F. Reznikova, A. Somogyi, Ju. Mohr, V. Saile. Proc. SPIE, 5539, 235 (2004). DOI: 10.1117/12.562615
  24. V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, J. Gottert. Nucl. Instrum. Methods Phys. Res. A, 582 (1), 120 (2007). DOI: 10.1016/j.nima.2007.08.076
  25. E. Pestov, A.K. Chernyshev, M.S. Mikhailenko, M.V. Zorina, E.I. Glushkov, E.V. Petrakov, I.V. Malyshev, N.I. Chkhalo, D.G. Reunov. Appl. Opt., 64 (4), 837 (2025). DOI: 10.1364/AO.542363
  26. A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M.B. Grigoriev, T. Roth, G. Vaughan, C. Detlefs. Phys. Rev. Lett., 103 (6), 064801 (2009). DOI: 10.1103/PhysRevLett.103.064801
  27. O.V. Chubar. IEEE Proc. Part. Accel. Conf., 4, 2447 (1995). DOI: 10.1109/PAC.1995.505579
  28. M. Born, E. Wolf. Principles of Optics, 7th ed. (Cambridge University Press, 1999)
  29. T. Naito, T. Mitsuhashi. Phys. Rev. ST Accel. Beams, 9 (12), 122802 (2006). DOI: 10.1103/PhysRevSTAB.9.122802
  30. K.S. Morgan, D.M. Paganin, K.K.W. Siu. Appl. Phys. Lett., 100 (12), 124102 (2012). DOI: 10.1063/1.3694918
  31. R. Cerbino, L. Peverini, M.A.C. Potenza, A. Robert, P. Bosecke, M. Giglio. Nat. Phys., 4 (3), 238 (2008). DOI: 10.1038/nphys837
  32. T. Tanaka. J. Synchrotron Radiat., 28 (4), 1267 (2021). DOI: 10.1107/S1600577521004100
  33. M.S.D. Rio, N. Canestrari, F. Jiang, F. Cerrina. J. Synchrotron Radiat., 18 (5), 708 (2011). DOI: 10.1107/S0909049511026306
  34. M.S.D. Rio, L. Rebuffi. AIP Conf. Proc., 2054 (1), 060081 (2019). DOI: 10.1063/1.5084712
  35. V. Nazmov, E. Reznikova, J. Mohr, V. Saile, L. Vincze, B. Vekemans, S. Bohic, A. Somogyi. J. Micromech. Microeng., 21 (1), 015020 (2010). DOI: 10.1088/0960-1317/21/1/015020
  36. V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, V. Saile. Microsyst. Technol., 10, 716 (2004). DOI: 10.1007/s00542-004-0433-0
  37. M. Simon, E. Reznikova, V. Nazmov, A. Last. Microsyst. Technol., 14 (9-11), 1727 (2008). DOI: 10.1007/s00542-008-0618-z
  38. E.I. Glushkov, A.A. Akhsakhalyan, P.A. Veprev, I.G. Zabrodin, M.V. Zorina, I.V. Malyshev, M.S. Mikhailenko, A.E. Pestov, E.V. Petrakov, R.S. Pleshkov, V.N. Polkovnikov, D.G. Reunov, A.B. Ulasevich, A.K. Chernyshov, N.I. Chkhalo, R.A. Shaposhnikov, Ya.V. Rakshun, Yu.V. Khomyakov, V.A. Chernov. ZhTF, (in Russian) 95 (10), (2025)
  39. K. Klementiev, R. Chernikov. Proc. SPIE, 9209, 60 (2014). DOI: 10.1117/12.2061400

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru