Hydrogenation of gadolinium thin films with a functional layer of niobium
Matyukhov V. V.1,2, Makarova M. V.1, Salamatov Yu. A.1, Proglyado V. V.1, Tolmacheva E. A.1, Kravtsov E. A.1,2
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: vvmatyukhovimpuran@yandex.ru

PDF
Controlled hydrogen saturation is a promising method for controlling the structural and magnetic properties of rare-earth metal thin films. Optimum conditions for hydrogenation of gadolinium thin films have been determined to obtain the required phases: a solid solution of hydrogen in gadolinium or gadolinium hydrides GdH2 and GdH3. It has been shown that hydrogenation of the gadolinium layer can be carried out both through a catalytic surface layer of platinum and through a functional niobium layer, without using noble metals. By analyzing the structural changes in the films, the processes of guiding of these two types in Gd thin films have been compared. Keywords: X-ray diffractometry, X-ray reflectometry, hydrogen, gadolinium, gadolinium hydrides, thin film hydrogenation.
  1. P. Vajda. In Handbook on the Physics and Chemistry of Rare Earths, ed. by K.A. Gschneidner, L. Eyring (Elsevier, North-Holl. Amsterdam, 1995), v. 20, p. 207
  2. I.V. petryanov-Sokolov. Populyarnaya biblioteka khimicheskikh elementov (Nauka, M., 1977) (in Russian)
  3. A.P. Kamantsev, V.V. Koledov, V.G. Shavrov, L.N. Butvina, A.V. Golovchan, V.I. Valkov, B.M. Todris, S.V. Taskaev, FMM, 123 (4), 448 (2022) (in Russian). DOI: 10.31857/S0015323022040064
  4. E.A. Tereshina, S. Khmelevskyi, G. Politova, T. Kaminskaya, H. Drulis, I.S. Tereshina. Sci. Rep., 6 (1), 22553 (2016). DOI: 10.1038/srep22553
  5. E. Shalaan, K.H. Ehses, H. Schmitt. J. Mater. Sci., 41, 7454 (2006). DOI: 10.1007/s10853-006-0798-9
  6. A. Marczynska, S. Pacanowski, B. Szymanski, L. Smardz. Acta Phys. Polon., 133, 624 (2018). DOI: 10.12693/APhysPolA.133.624
  7. M. Wachowiak, L. Smardz. Intern. J. Hydrogen Energy, 48, 26840 (2023). DOI: 10.1016/j.ijhydene.2023.03.282
  8. P. Tessier, D. Fruchart, D. Givord. J. Alloys Comp., 330, 369 (2002). DOI: 10.1016/S0925-8388(01)01639-5
  9. H. Hirama, M. Hayakawa, T. Okoshi, M. Sakai, K. Higuchi, A. Kitajima, A. Oshima, S. Hasegawa. J. Cryst. Growth., 378, 356 (2013). DOI: 10.1016/j.jcrysgro.2012.12.175
  10. V. Leiner, M. Ay, H. Zabel. Phys. Rev., 70, 104429 (2004). DOI: 10.1103/PhysRevB.70.104429
  11. Y. Manassen, H. Realpe, D. Schweke. J. Phys. Chem. C, 123 (18), 11933 (2019). DOI: 10.1021/acs.jpcc.9b00932
  12. L.J. Bannenberg, B. Boshuizen, F.A. Nugroho, H. Schreuders. ACS Appl. Mater. Interfaces, 13 (44), 52530 (2021). DOI: 10.1021/acsami.1c13240
  13. I.A. Likhachev, I.A. Subbotin, Yu.M. Chesnokov, D.I. Devyaterikov, O.A. Kondrat'ev, A.A. Ryzhova, Yu.A. Salamatov, M.A. Milyaev, A.L. Vasil'ev, E.A. Kravtsov, E.M. Pashaev. Phys. Metals Metallogr., 124 (12), 1224 (2023). DOI: 10.1134/S0031918X23602202
  14. Yu.A. Salamatov, D.I. Devyaterikov, M.V. Makarova, V.V. Matyukhov, Yu.S. Ponosov, V.V. Proglyado, E.A. Tolmacheva, E.A. Kravtsov. ZhTF, 95 (3), 615 (2025) (in Russian). DOI: 10.61011/JTF.2025.03.59869.360-24
  15. B. Baranowski. Physica B, 265, 16 (1999). DOI: 10.1016/S0921-4526(98)01309-X
  16. R.C. Brouwer, R. Griessen, Phys. Rev. Lett., 62, 1760 (1989). DOI: 10.1103/PhysRevLett.62.1760
  17. D.I. Devyaterikov, V.O. Vas'kovsky, V.D. Zhaketov, E.A. Kravtsov, M.V. Makarova, V.V. Proglyado, E.A. Stepanova, V.V. Ustinov. Phys. Metals Metallogr., 121, 1127 (2020). DOI: 10.1134/S0031918X20120042
  18. L. Helmich, M. Bartke, N. Teichert, B. Schleicher, S. Fahler, A. Hutten. AIP Adv., 7, 056429 (2017). DOI: 10.1063/1.4977880
  19. W. Kraus, G. Nolze. J. Appl. Cryst., 29, 301 (1996). DOI: 10.1107/S0021889895014920
  20. P.M. Reimer, H. Zabel, C.P. Flynn, J.A. Dura. J. Cryst., 127. 643 (1993). DOI: 10.1016/0022-0248(93)90701-W
  21. T. Matsumoto, J. Eastman, H.K. Birnbaum. Scripta Met., 15, 1033 (1981)
  22. J.W. Arblaster. Selected Values of the Crystallographic Properties of the Elements (ASM International, 2018)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru