Probe microscopy of resistive switching in nanocrystalline copper oxide (CuxO)
Fedorov L.Yu. 1,2, Karpov I. V. 1,2, Pavlov A. V. 1,2, Zhilkashinova A. M. 3, Lyamkin A. I. 1,2
1Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan
Email: 1401-87@mail.ru, karpovsfu@mail.ru, alexandr_pavlov_1988@mail.ru, almira_1981@mail.ru, doca@bk.ru

PDF
The paper studies the effect of resistive switching in nanocrystalline copper oxide (CuxO) films synthesized by vacuum arc deposition in an argon-oxygen atmosphere. The structural and electrophysical properties of films with different phase compositions (Cu2O, CuO, mixed phases) are studied using X-ray diffraction, Raman and photoluminescence spectroscopy, and atomic force microscopy. It is found that changing the partial pressure of oxygen during synthesis allows one to control the stoichiometry and defect structure of oxides. Conductive atomic force microscopy modes are used for local analysis of resistive switching, demonstrating bipolar behavior for mixed CuxO phases. The results confirm the promise of nanocrystalline copper oxides for creating memristors with controlled characteristics. Keywords: copper oxides, stoichiometry, vacuum arc, memristors.
  1. A.G.Isaev, O.O.Permyakov, A.E.Rogozhin. Mikroelektronika, (in Russian). 52, 127 (2023). DOI: 10.31857/S0544126923700242
  2. C. Baeumer, R. Valenta, C. Schmitz, A. Locatelli, S.P. Rogers, A. Sala, N. Raab, S. Nemsak, M. Shim, C.M. Schneider, S. Menzel, R. Waser, R. Dittmann. ACS Nano, 11, 6921 (2017). DOI: 10.1021/acsnano.7b02113
  3. S.M. Patil, S.S. Kundale, S.S. Sutar, P.J. Patil, A.M. Teli, S.A. Beknalkar, R.K. Kamat, J. Bae, J.C. Shin, T.D. Dongale. Sci. Reports, 13, 4905 (2023). DOI: 10.1038/s41598-023-32173-8
  4. S. Rehman, J.-H. Hur, D.-K. Kim. J. Phys. Chem. C, 122, 11076 (2018). DOI: 10.1021/acs.jpcc.8b00432
  5. Z. Fan, X. Fan, A. Li, L. Dong. 12th IEEE Intern., Conf. Nanotechnol. (IEEE-NANO). (Birmingham, 2012), p. 1-4, DOI: 10.1109/NANO.2012.6322196
  6. Y.-M. Hu, Z.-D. Li, C.-H. Chia, J.-W. Chiou, Y.-Y. Liao, C.-C. Yu, T.-C. Han, S.-R. Jian, J.-Y. Juang. Appl. Surf. Sci., 601, 154215 (2022). DOI: 10.1016/j.apsusc.2022.154215
  7. U.-B. Han, J.-S. Lee. Sci. Reports, 6, 25537 (2016). DOI: 10.1038/srep25537
  8. M. Kovsivcek, J. Zavavsnik, O. Baranov, B.vS. Bativc, U. Cvelbar. Cryst. Growth \& Design, 22, 6656 (2022). DOI: 10.1021/acs.cgd.2c00863
  9. A.V. Ushakov, I.V. Karpov, L.Yu. Fedorov, E.A. Goncharova, M.V. Brungardt, V.G. Demin. ZhTF, 91 (12), 1984 (2021) (in Russian). DOI: 10.21883/JTF.2021.12.51764.157-21
  10. A.V.Ushakov, I.V.Karpov, L.Yu.Fedorov, E.A.Dorozhkina, O.N.Karpova, A.A.Shaikhadinov, V.G.Demin, A.I.Demchenko, M.V.Brungardt, E.A.Goncharova. Materialovedenie, 8, 26 (2019). (in Russian). DOI: 10.31044/1684-579X-2019-0-8-26-32
  11. Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo. ACS Catal., 6, 2473 (2016). DOI: 10.1021/acscatal.6b002050
  12. L. Debbichi, M.C.M. de Lucas, J.F. Pierson, P. Kruger. J. Phys. Chem. C, 116, 10232 (2012). DOI: 10.1021/jp303096m
  13. L.Yu.Fedorov, A.V.Ushakov, I.V.Karpov. Materialovedenie, 1, 28 (2024). (in Russian). DOI: 10.31044/1684-579X-2024-0-1-28-34
  14. M. Takahata, N. Naka. Phys. Rev. B, 98, 195205 (2018). DOI: 10.1103/PhysRevB.98.195205
  15. G. Marti nez-Saucedo, C.G. Torres-Castanedo, S. Arias-Ceron, R. Castanedo-Perez, G. Torres-Delgado, O. Zelaya-Angel. J. Lumines., 215, 116642 (2019). DOI: 10.1016/j.jlumin.2019.116642
  16. D. Nunes, T.R. Calmeiro, S. Nandy, J.V. Pinto, A. Pimentel, P. Barquinha, P.A. Carvalho, J.C. Walmsley, E. Fortunato, R. Martins. Thin Solid Films, 601, 45 (2016). DOI: 10.1016/j.tsf.2015.11.077
  17. W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin, Z. Huang. Materials, 11, 1253 (2018). DOI: 10.3390/ma11071253
  18. S. Dolai, S. Das, S. Hussain, R. Bhar, A.K. Pal. Vacuum, 141, 296 (2017). DOI: 10.1016/j.vacuum.2017.04.033
  19. Y. Peng, Z. Zhang, T.V. Pham, Y. Zhao, P. Wu, J. Wang. J. Appl. Phys., 111, 103708 (2012). DOI: 10.1063/1.4719059
  20. M. Younas, M. Nadeem, M. Idrees, M.J. Akhtar. Appl. Phys. Lett., 100, 152103 (2012). DOI: 10.1063/1.3702465
  21. A.G.Isaev, O.O.Permyakov, A.E.Rogozhin. ZhTF 93, 1143 (2023) (in Russian). DOI: 10.21883/JTF.2023.08.55976.9-23
  22. D.O.Filatov, M.N.Koryazhkina, D.A.Antonov, I.N.Antonov, D.A.Liskin, M.A.Ryabova, O.N.Gorshkov. ZhTF, 89 (11), 1669 (2019) (in Russian). DOI: 10.21883/JTF.2019.11.48326.127-19

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru