Luminescence tomography of upconversion luminophores with discrete distribution
L.A. Nurtdinova 1, Leontyev A.V. 1, Е.O. Mityushkin 1, Bizyaev D. A. 1, Nurgazizov N. I. 1, Chuklanov A. P. 1, Kosach P. A.2, Zverev D. G. 2, Nikiforov V. G. 1
1Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan, Russia
2Kazan Federal University, Kazan, Russia
Email: nurlari@yandex.ru, mailscrew@gmail.com, m1tyushck1n@yandex.ru, dbiziaev@inbox.ru, niazn@mail.ru, achuklanov@kfti.knc.ru, rbpavel1975@gmail.com, dzverev@mail.ru, vgnik@mail.ru

PDF
Test measurements of a discrete structure model were performed using confocal optical microscopy and luminescence tomography techniques. This test structure, which has a pronounced discrete distribution of upconversion phosphoraggregates, was created using atomic force microscopy techniques. Particles of the chosen luminophore NaYF4:Yb(18 %), Er(2 %), were synthesized using the hydrothermal method. Their upconversion luminescence in the visible spectrum upon near-infrared laser excitation at around 980 nm makes them attractive for a wide range of bioimaging applications. Using confocal microscopy, the luminescent signal was recorded with 3D spatial resolution. The comparative analysis of post-processing algorithms applied to experimental data showed that, in the case of a pronounced discrete distribution of luminophores, accounting for the point spread function in deconvolution processing allows both to level image artifacts and to significantly increase the accuracy of determining the size of luminescent objects. Keywords: confocal microscopy, image deconvolution, fluorescence tomography, atomic force microscopy, upconversion luminophores, fluoride particles.
  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto. Science, 254, 1178 (1991). DOI: 10.1126/science.1957169
  2. S.W. Paddock. Bio Techniques, 27 (5), 992 (1999). DOI: 10.2144/99275ov01
  3. K. Shi, P. Li, S. Yin, Z. Liu. Optics Express, 12 (10), 2096 (2004). DOI: 10.1364/OPEX.12.002096
  4. B. Rosal, D. Jaque. Methods Appl. Fluorescence, 7 (2), 022001 (2019). DOI: 10.1088/2050-6120/ab029f
  5. H. Li, M. Tan, X. Wang, F. Li, Y. Zhang, L. Zhao, C. Yang, G. Chen. J. American Chem. Society, 142 (4), 2023 (2020). DOI: 10.1021/jacs.9b11641
  6. W. Jiang, J. Yi, X. Li, F. He, N. Niu, L. Chen. Biosensors, 12, 1036 (2022). DOI: 10.3390/bios12111036
  7. G. Lee, Y.I. Park. Nanomaterials, 8 (7), 511 (2018). DOI: 10.3390/nano8070511
  8. H. Lv, J. Liu, Y. Wang, X. Xia, Y. Li, W. Hou, F. Li, L. Guo, X. Li. Frontiers in Chemistry, 10, 996264 (2022). DOI: 10.3389/fchem.2022.996264
  9. Y. Han, Y. An, G. Jia, X. Wang, C. He, Y. Ding, Q. Tang. Nanoscale, 10, 6511 (2018). DOI: 10.1039/C7NR09717D
  10. G. Ren, S. Zeng, J. Hao. J. Phys. Chem. C, 115, 20141 (2011). DOI: 10.1021/jp2064529
  11. E.O. Mityushkin, D.K. Zharkov, A.V. Leontiev, L.A. Nurtdinova, A.G. Shmelev, V.G. Nikiforov. Izvestiya RAN. Ser. fiz., 87 (12), 310 (2023) (in Russian). DOI: 10.31857/S0367676523702976
  12. D.K. Zharkov, O.E. Mityushkin, A.V. Leontiev, L.A. Nurtdinova, A.G. Shmelev, N.M. Lyadov, A.V. Pashkevich, A.P. Saiko, O.Kh. Khasanov, V.G. Nikiforov. Izvestiya RAN. Ser. fiz., 87 (12), 310 (2023) (in Russian). DOI: 10.31857/S036767652370299X
  13. A.D. Elliott. Current Protocols in Cytometry, 92 (1), e68 (2019). DOI: 10.1002/cpcy.68
  14. R.H. Webb. Rep. Prog. Phys., 59 (3), 427 (1996). DOI: 10.1088/0034-4885/59/3/003
  15. J.M. Binder, A. Stark, N. Tomek, J. Scheuer, F. Frank, K.D. Jahnke, C. Muller, S. Schmitt, M.H. Metsch, T. Unden, T. Gehring, A. Huck, U.L. Andersen, L.J. Rogers, F. Jelezko. SoftwareX, 6, 85 (2017). DOI: 10.1016/j.softx.2017.02.001
  16. A.P. Tchuklanov, A.S. Morozova, N.I. Nurgazizov, E.O. Mityushkin, D.K. Zharkov, A.V. Leontiev, V.G. Nikiforov. ZhTF, 93 (7), 1019 (2023) (in Russian). DOI: 10.21883/JTF.2023.07.55763.82-23
  17. A.P. Chuklanov, A.S. Morozova, Ye.O. Mityushkin, A.V. Leontyev, L.A. Nurtdinova, V.G. Nikiforov, N.I. Nurgagizov Bull. Russ. Academy Sciences: Physics, 88 (12), 1971 (2024). DOI: 10.1134/S1062873824708559
  18. T. Wilson. J. Microscopy, 244, 113 (2011). DOI: 10.1111/j.1365-2818.2011.03549.x
  19. A.V. Leontiev, L.A. Nurtdinova, E.O. Mityushkin, A.G. Shmelev, D.K. Zharkov, V.V. Andrianov, L.N. Muranova, Kh.L. Gainutdinnov, R.R. Zairov, A.R. Khazieva, A.R. Mustafina, V.G. Nikiforov. ZhTF, 94 (9), 1576 (2024) (in Russian). DOI: 10.61011/JTF.2024.09.58680.83-24
  20. W.H. Richardson. J. Opt. Soc. Am., 62, 55 (1972). DOI: 10.1364/JOSA.62.000055
  21. L.B. Lucy. Astronom. J. 79, 745 (1974). DOI: 10.1086/111605
  22. N. Dey, L. Blanc-Feraud, C. Zimmer, Z. Kam, J.-C. Olivo-Marin, J. Zerubia. 2004 2nd IEEE Intern. Sympos. Biomed. Imaging: Nano to Macro (IEEE Cat No. 04EX821) (Arlington, VA, USA, 2004), v. 2, p. 1223-1226, DOI: 10.1109/ISBI.2004.1398765
  23. P.J. Shaw. Comparison of Widefield/Deconvolution and Confocal Microscopy for Three-Dimensional Imaging in: J. Pawley (eds) Handbook Of Biological Confocal Microscopy (Springer, Boston, MA. Handbook of Biological Confocal Microscopy, Third Edition, edited by J.B. Pawley, (Springer, Boston, MA, 2006)), DOI: 10.1007/978-0-387-45524-2_23

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru