Luminescence tomography of upconversion luminophores with discrete distribution
L.A. Nurtdinova
1, Leontyev A.V.
1, Е.O. Mityushkin
1, Bizyaev D. A.
1, Nurgazizov N. I.
1, Chuklanov A. P.
1, Kosach P. A.
2, Zverev D. G.
2, Nikiforov V. G.
11Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan, Russia
2Kazan Federal University, Kazan, Russia
Email: nurlari@yandex.ru, mailscrew@gmail.com, m1tyushck1n@yandex.ru, dbiziaev@inbox.ru, niazn@mail.ru, achuklanov@kfti.knc.ru, rbpavel1975@gmail.com, dzverev@mail.ru, vgnik@mail.ru
Test measurements of a discrete structure model were performed using confocal optical microscopy and luminescence tomography techniques. This test structure, which has a pronounced discrete distribution of upconversion phosphoraggregates, was created using atomic force microscopy techniques. Particles of the chosen luminophore NaYF4:Yb(18 %), Er(2 %), were synthesized using the hydrothermal method. Their upconversion luminescence in the visible spectrum upon near-infrared laser excitation at around 980 nm makes them attractive for a wide range of bioimaging applications. Using confocal microscopy, the luminescent signal was recorded with 3D spatial resolution. The comparative analysis of post-processing algorithms applied to experimental data showed that, in the case of a pronounced discrete distribution of luminophores, accounting for the point spread function in deconvolution processing allows both to level image artifacts and to significantly increase the accuracy of determining the size of luminescent objects. Keywords: confocal microscopy, image deconvolution, fluorescence tomography, atomic force microscopy, upconversion luminophores, fluoride particles.
- D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto. Science, 254, 1178 (1991). DOI: 10.1126/science.1957169
- S.W. Paddock. Bio Techniques, 27 (5), 992 (1999). DOI: 10.2144/99275ov01
- K. Shi, P. Li, S. Yin, Z. Liu. Optics Express, 12 (10), 2096 (2004). DOI: 10.1364/OPEX.12.002096
- B. Rosal, D. Jaque. Methods Appl. Fluorescence, 7 (2), 022001 (2019). DOI: 10.1088/2050-6120/ab029f
- H. Li, M. Tan, X. Wang, F. Li, Y. Zhang, L. Zhao, C. Yang, G. Chen. J. American Chem. Society, 142 (4), 2023 (2020). DOI: 10.1021/jacs.9b11641
- W. Jiang, J. Yi, X. Li, F. He, N. Niu, L. Chen. Biosensors, 12, 1036 (2022). DOI: 10.3390/bios12111036
- G. Lee, Y.I. Park. Nanomaterials, 8 (7), 511 (2018). DOI: 10.3390/nano8070511
- H. Lv, J. Liu, Y. Wang, X. Xia, Y. Li, W. Hou, F. Li, L. Guo, X. Li. Frontiers in Chemistry, 10, 996264 (2022). DOI: 10.3389/fchem.2022.996264
- Y. Han, Y. An, G. Jia, X. Wang, C. He, Y. Ding, Q. Tang. Nanoscale, 10, 6511 (2018). DOI: 10.1039/C7NR09717D
- G. Ren, S. Zeng, J. Hao. J. Phys. Chem. C, 115, 20141 (2011). DOI: 10.1021/jp2064529
- E.O. Mityushkin, D.K. Zharkov, A.V. Leontiev, L.A. Nurtdinova, A.G. Shmelev, V.G. Nikiforov. Izvestiya RAN. Ser. fiz., 87 (12), 310 (2023) (in Russian). DOI: 10.31857/S0367676523702976
- D.K. Zharkov, O.E. Mityushkin, A.V. Leontiev, L.A. Nurtdinova, A.G. Shmelev, N.M. Lyadov, A.V. Pashkevich, A.P. Saiko, O.Kh. Khasanov, V.G. Nikiforov. Izvestiya RAN. Ser. fiz., 87 (12), 310 (2023) (in Russian). DOI: 10.31857/S036767652370299X
- A.D. Elliott. Current Protocols in Cytometry, 92 (1), e68 (2019). DOI: 10.1002/cpcy.68
- R.H. Webb. Rep. Prog. Phys., 59 (3), 427 (1996). DOI: 10.1088/0034-4885/59/3/003
- J.M. Binder, A. Stark, N. Tomek, J. Scheuer, F. Frank, K.D. Jahnke, C. Muller, S. Schmitt, M.H. Metsch, T. Unden, T. Gehring, A. Huck, U.L. Andersen, L.J. Rogers, F. Jelezko. SoftwareX, 6, 85 (2017). DOI: 10.1016/j.softx.2017.02.001
- A.P. Tchuklanov, A.S. Morozova, N.I. Nurgazizov, E.O. Mityushkin, D.K. Zharkov, A.V. Leontiev, V.G. Nikiforov. ZhTF, 93 (7), 1019 (2023) (in Russian). DOI: 10.21883/JTF.2023.07.55763.82-23
- A.P. Chuklanov, A.S. Morozova, Ye.O. Mityushkin, A.V. Leontyev, L.A. Nurtdinova, V.G. Nikiforov, N.I. Nurgagizov Bull. Russ. Academy Sciences: Physics, 88 (12), 1971 (2024). DOI: 10.1134/S1062873824708559
- T. Wilson. J. Microscopy, 244, 113 (2011). DOI: 10.1111/j.1365-2818.2011.03549.x
- A.V. Leontiev, L.A. Nurtdinova, E.O. Mityushkin, A.G. Shmelev, D.K. Zharkov, V.V. Andrianov, L.N. Muranova, Kh.L. Gainutdinnov, R.R. Zairov, A.R. Khazieva, A.R. Mustafina, V.G. Nikiforov. ZhTF, 94 (9), 1576 (2024) (in Russian). DOI: 10.61011/JTF.2024.09.58680.83-24
- W.H. Richardson. J. Opt. Soc. Am., 62, 55 (1972). DOI: 10.1364/JOSA.62.000055
- L.B. Lucy. Astronom. J. 79, 745 (1974). DOI: 10.1086/111605
- N. Dey, L. Blanc-Feraud, C. Zimmer, Z. Kam, J.-C. Olivo-Marin, J. Zerubia. 2004 2nd IEEE Intern. Sympos. Biomed. Imaging: Nano to Macro (IEEE Cat No. 04EX821) (Arlington, VA, USA, 2004), v. 2, p. 1223-1226, DOI: 10.1109/ISBI.2004.1398765
- P.J. Shaw. Comparison of Widefield/Deconvolution and Confocal Microscopy for Three-Dimensional Imaging in: J. Pawley (eds) Handbook Of Biological Confocal Microscopy (Springer, Boston, MA. Handbook of Biological Confocal Microscopy, Third Edition, edited by J.B. Pawley, (Springer, Boston, MA, 2006)), DOI: 10.1007/978-0-387-45524-2_23
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.