Lateral photovoltaic effect in the Fe3O4/SiO2/n-Si structure: influence of the SiO2 thickness
T.A. Pisarenko1, D.A. Tsukanov1,2, V.V. Balashev1,2, A.A. Yakovlev1
1Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
2Far Eastern Federal University, Vladivostok, Russia
Email: tata_dvo@iacp.dvo.ru

PDF
The work provides research on the lateral photovoltaic effect in the Fe3O4/SiO2/n-Si structure with the thickness of the silicon oxide layer 2 and 5 nm. It has been shown that increase of the thickness of the SiO2 layer in the studied structure results in a changed type of dependences of sensitivity and nonlinearity of lateral photovoltage on the thickness of the Fe3O4 film as well as a form of photoresponse signals under pulsed illumination. It has been established that a change of photosensitivity in the Fe3O4/SiO2/n-Si structure with increase of the thickness of SiO2 is due to both influence of surface and interface states at the SiO2/n-Si interface and redistribution of channel conductivity as well. Extrema on the thickness dependence of the photovoltaic characteristics are related to the quantum-size effect which modulates a height of the built-in barrier. Keywords: optoelectronic devices, photovoltaic effect, photoresponse, magnetite, silicon.
  1. J.T. Wallmark. Proc. IRE, 45 (4), 474 (1957). DOI: 10.1109/JRPROC.1957.278435
  2. G. Lucovsky. J. Appl. Phys., 31 (6), 1088 (1960). DOI: 10.1063/1.1735750
  3. P.P. Konorov, Yu.A. Tarantov. Uchenye zapiski LGU, Ser. fizicheskikh nauk, 370 (17), 114 (1974). (in Russian)
  4. T. Shikama, H. Niu, M. Takai. Jpn. J. Appl. Phys., 23 (10R), 1314 (1984). DOI: 10.1143/JJAP.23.1314
  5. A. Samarin. Elektronnye komponenty, 7, 103 (2003). (in Russian)
  6. W.C. Ma, A.A. Rizzi, R.L. Hollis. Proc. 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). V. 2. IEEE, 2000), DOI: 10.1109/ROBOT.2000.844828
  7. E. Fortunato, G. Lavareda, R. Martins, F. Soares, L. Fernandes. Sens. Actuators A: Phys., 51 (2-3), 135 (1995). DOI: 10.1016/0924-4247(95)01214-1
  8. J. Henry, J. Livingstone. J. Phys. D: Appl. Phys., 41 (16), 165106 (2008). DOI: 10.1088/0022-3727/41/16/165106
  9. W. Wang, J. Lu, Z. Ni. Nano Res., 14, 1889 (2021). DOI: 10.1007/s12274-020-2917-3
  10. C. Yu, H. Wang. Sensors, 10 (11), 10155 (2010). DOI: 10.3390/s101110155
  11. S. Qiao, B. Liang, J. Liu, G. Fu, S. Wang. J. Phys. D.: Appl. Phys., 54 (15), 153003 (2021). DOI: 10.1088/1361-6463/abd433
  12. T.A. Pisarenko, V.V. Korobtsov, A.A. Dimitriev, V.V. Balashev. Physics Solid State, 64 (8), 1111 (2022). DOI: 10.21883/PSS.2022.08.54635.363
  13. H. Nguyen, A.R.M. Foisal, T. Nguyen, T. Dinh, E.W. Streed, N.T. Nguyen, D.V. Dao. J. Phys. D.: Appl. Phys., 54 (26), 265101 (2021). DOI: 10.1088/1361-6463/abf3ff
  14. J. Dai, L. Spinu, K.Y. Wang, L. Malkinski, J. Tang, J. Phys. D.: Appl. Phys., 33 (11), L65 (2000). DOI: 10.1088/0022-3727/33/11/101
  15. W.B. Mi, E.Y. Jiang, H.L. Bai. J. Appl. Phys., 107 (10), 103922 (2010). DOI: 10.1063/1.3429082
  16. V.A. Vikulov, A.A. Dimitriev, V.V. Balashev, T.A. Pisarenko, V.V. Korobtsov. Mater. Sci. Eng., B 211, 33 (2016). DOI: 10.1016/j.mseb.2016.05.014
  17. T.A. Pisarenko, V.V. Balashev, V.A. Vikulov, A.A. Dimitriev, V.V. Korobtsov. Physics Solid State, 60, 1316 (2018). DOI: 10.1134/S10637834l8070223]
  18. T.A. Pisarenko, V.V. Korobtsov, V.V. Balashev, A.A. Dimitriev, S.V. Bondarenko. Solid State Phenom., 312, 98 (2020). DOI: 10.4028/www.scientific.net/SSP.312.98
  19. T.A. Pisarenko, V.V. Korobtsov, V.V. Balashev, A.A. Dimitriev. Solid State Phenom., 312, 92 (2020). DOI: 10.4028/www.scientific.net/SSP.312.92
  20. T.A. Pisarenko, V.V. Balashev, V.V. Korobtsov, A.A. Dimitriev. Defect Diffus. Forum, 386, 137 (2018). DOI: 10.4028/www.scientific.net/DDF.386.137
  21. V.V. Shchennikov, S.V. Ovsyannikov. J. Phys.: Condens. Matter., 21 (27), 271001 (2009). DOI: 10.1088/0953-8984/21/27/271001
  22. F. Walz. J. Phys.: Condens. Matter., 14 (12), R285 (2002). DOI: 10.1088/0953-8984/14/12/203
  23. H. Kobayashi, Asuha, O. Maida, M. Takahashi, H. Iwasa. J. Appl. Phys., 94 (11), 7328 (2003). DOI: 10.1063/1.1621720
  24. Y. Ishizaka, J. Shiraki. Electrochem. Soc., 133 (4), 666 (1986). DOI: 10.1149/1.2108651
  25. N.F. Mott, S. Rigo, F. Rochet, A.M. Stoneham. Philos. Mag. B, 60 (2), 189 (1989). DOI: 10.1080/1364281890821119
  26. H.Z. Massoud, J.D. Plummer, E.A. Irene. J. Electrochem. Soc., 132 (11), 2685 (1985). DOI: 10.1149/1.2113648
  27. T. Matsumoto, H. Nakajima, D. Irishika, T. Nonaka, K. Imamura, H. Kobayashi. Appl. Surf. Sci., 395, 56 (2017). DOI: 10.1016/j.apsusc.2016.06.001
  28. H. Fukuda, M. Yasuda, T. Iwabuchi, S. Kaneko, T. Ueno, I. Ohdomari. J. Appl. Phys., 72 (5), 1906 (1992). DOI: 10.1063/1.351665
  29. J. Shewchun, D. Burk, M.B. Spitzer. IEEE Trans. Electron Devices, 27 (4), 705 (1980). DOI: 10.1109/T-ED.1980.19926
  30. F.K. Schulte. Surf. Sci., 55 (2), 427 (1976). DOI: 10.1016/0039-6028(76)90250-8
  31. C. Li, W. Chen, M. Li, Q. Sun, Y. Jia. New J. Phys., 17 (5), 053006 (2015). DOI: 10.1088/1367-2630/17/5/053006
  32. F. Lavini, A. Calo, Y. Gao, E. Albisetti, T. Cao, G. Li, C. Aruta, E. Riedo. Nanoscale, 10 (17), 8304 (2018). DOI: 10.13140/RG.2.2.29012.45445
  33. N.D. Zhukov, V.F. Kabanov, A.I. Mihaylov, D.S. Mosiyash, Ya.E. Pereverzev, A.A. Hazanov, M.I. Shishkin. Semiconductors, 52, 78 (2018). DOI: 10.1134/S1063782618010256
  34. S. Taketomi, H. Takahashi, N. Inaba, H. Miyajima. J. Phys. Soc. Jpn., 60 (10), 3426 (1991). DOI: 10.1143/JPSJ.60.3426
  35. X. Liu, S.B. Zhang, X.C. Ma, J.F. Jia, Q.K. Xue, X.H. Bao, W.X. Li. Appl. Phys. Lett., 93 (9), 093105 (2008). DOI: 10.1063/1.2977529
  36. J.T. Drotar, T.M. Lu, G.C. Wang. J. Appl. Phys., 96 (12), 7071 (2004). DOI: 10.1063/1.1811785
  37. L.B. Freeman, W.E. Dahlke. Solid-State Electron., 13 (11), 1483 (1970). DOI: 10.1016/0038-1101(70)90084-5
  38. E.H. Sondheimer, Adv. Phys., 50 (6), 499 (2001). DOI: 10.1080/00018730110102187
  39. X. Wang, B. Song, M. Huo, Y. Song, Z. Lv, Y. Zhang, Y. Wang, Y. Song, J. Wen, Y. Sui. J. Tang, RSC Adv., 5 (80), 65048 (2015). DOI: 10.1039/C5RA11872G
  40. A.M. Cowley, S.M. Sze. J. Appl. Phys., 36 (10), 3212 (1965). DOI: 10.1063/1.1702952
  41. A.E. Iverson, D.L. Smith. IEEE Trans. Electron Devices, 34 (10), 2098 (1987). DOI: 10.1109/T-ED.1987.23203
  42. W.S. Levine. The control handbook (Jaico Publishing House, Mumbai, 1999), v. 1, p. 158
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru