The effect of Co and Ni on magnetic properties and microstructure of BaFe12-xNixO19 and BaFe12-xCoxO19 powders synthesized by the hydrothermal method
Kostishin V. G. 1, Mironovich A. Yu.1, Al-Khafaji H. I.1, Skorlupin G. A.1, Savchenko E. S.1, Ril A. I.2
1National University of Science and Technology MISiS, Moscow, Russia
2Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
Email: amironovich24@gmail.com

PDF
In this work, nanoscale powders of Co- and Ni-substituted barium hexaferrites were obtained by hydrothermal synthesis (BaFe12-xCoxO19 and BaFe12-xNixO19 with x=0.1, 0.3, 0.5). The obtained samples were analyzed by several methods, including XRD, EDX, VSM, FTIR and TEM. It is shown that despite the close chemical nature of Co2+ and Ni2+, the effect of substitution of Fe3+ by these elements is completely different. Thus, nickel has virtually no effect on the shape and size of the resulting BaFe12-xNixO19 particles (plate-shaped crystallites with a diameter of about 200 nm and a thickness of 60 nm). With an increase in the nickel concentration, the magnetic parameters of the resulting ferrites decrease almost linearly. Cobalt, on the contrary, in a certain concentration leads to a significant change in the morphology of the particles (thinning of the crystallites to 30 nm or less), resulting in a sharp decrease in the coercive force of the resulting powders. This effect is due to the fact that cobalt promotes the formation of the BaFe12-xCoxO19 phase directly during the hydrothermal treatment of the precursors, whereas additional high-temperature treatment is required to form BaFe12-xNixO19 and BaFe12O19. Keywords: barium hexaferrite, hydrothermal synthesis, substituted hexaferrite, Mossbauer spectroscopy, magnetic measurements.
  1. R.C. Pullar. Progr. Mater. Sci., 57 (7), 1191 (2012). DOI: 10.1016/j.pmatsci.2012.04.001
  2. J.J. Went. Philips Techn. Rev., 13, 194 (1952). DOI: 10.2497/jjspm.57.41
  3. R.I. Shakirzyanov, N.O. Volodina, A.L. Kozlovskiy, M.V. Zdorovets, D.I. Shlimas, D.B. Borgekov, Y.A. Garanin. J. Compos. Sci., 7 (10), 411 (2023). DOI: 10.3390/jcs7100411
  4. J.B. Baruah. Inorganica Chimica Acta, 560, 121838 (2023). DOI: 10.1016/j.ica.2023.121838
  5. S. Prabhu, M. Maruthapandi, A. Durairaj, S. Arun Kumar, J.H. Luong, R. Ramesh, A. Gedanken. ACS Appl. Energy Mater., 6 (3), 1321 (2023). DOI: 10.1021/acsaem.2c03067
  6. E. van der Maas, T. Famprikis, S. Pieters, J.P. Dijkstra, Z. Li, S.R. Parnell, R.I. Smith, E.R.H. van Eck, S. Ganapathy, M. Wagemaker. J. Mater. Chem. A, 11 (9), 4559 (2023). DOI: 10.1039/D2TA08433C
  7. B. Sawicki, E. Tomaszewicz, M. Guzik, T. Gron, M. Oboz, H. Duda, S. Pawlus, P. Urbanowicz. Ceram. Intern., 49 (1), 944 (2023). DOI: 10.1016/j.ceramint.2022.09.068
  8. V.G. Kostishin, V.V. Korovushkin, K.V. Pokholok, A.V. Trukhanov, I.M. Isaev, A.Yu. Mironovich, M.A. Darwish. Phys. Solid State, 63 (11), 1680 (2021). DOI: 10.1134/S1063783421100176
  9. V.G. Kostishin, V.V. Korovushkin, I.M. Isaev, A.Yu. Mironovich, S.V. Trukhanov, V.A. Turchenko, K.A. Astapovich, A.V. Trukhanov. Phys. Solid State, 63, 253 (2021). DOI: 10.1134/S106378342102013X
  10. V.V. Korovushkin, A.V. Trukhanov, V.G. Kostishin, I.M. Isaev, S.V. Trukhanov, K.A. Astapovich, A.Yu. Mironovich. Inorganic Mater., 56, 707 (2020). DOI: 10.1134/S0020168520070080
  11. Y. Yang, S. Feng, X. Kan, Q. Lv, A.V. Trukhanov, S.V. Trukhanov. Chem. Select, 6 (3), 470 (2021) DOI: 10.1002/slct.202002620
  12. W. Zhang, J. Li, S. Yi, P. Zu, J. Wu, J. Lin, M. Li, W. Su. J. Alloys Compounds, 871, 159563 (2021). DOI: 10.1016/j.jallcom.2021.159563
  13. Y. Slimani, B. Unal, M.A. Almessiere, A.D. Korkmaz, A. Baykal. Mater. Chem. Phys., 260, 124162 (2021). DOI: 10.1016/j.matchemphys.2020.124162
  14. D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, S.A. Gudkova, I.V. Chumanov, L.I. Isaenko, R. Niewa. J. Alloys Compounds, 628, 480 (2015). DOI: 10.1016/j.jallcom.2014.12.124
  15. C. Liu, X. Kan, F. Hu, X. Liu, S. Feng, J. Hu, W. Wang, K.M.U. Rehman, M. Shezad, C. Zhang, H. Li, S. Zhou, Q. Wu. J. Alloys Compounds, 784, 1175 (2019). DOI: 10.1016/j.jallcom.2019.01.112
  16. K. Pubby, S.B. Narang, S.K. Chawla, P. Kaur. J. Superconductivity Novel Magnetism, 30, 3465 (2017). DOI: 10.1007/s10948-017-4141-2
  17. N. Doebelin, R. Kleeberg. J. Appl. Crystall., 48 (5), 1573 (2015). DOI: 10.1107/S1600576715014685
  18. M.C. Dimri, H. Khanduri, P. Agarwal, J. Pahapill, R. Stern. J. Magn. Magn. Mater., 486, 165278 (2019). DOI: 10.1016/j.jmmm.2019.165278
  19. R.D. Shannon, C.T. Prewitt. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 25 (5), 925 (1969). DOI: 10.1107/S0567740869003220
  20. F.H. Gj rup, M. Saura-Muzquiz, J.V. Ahlburg, H.L. Andersen, M. Christensen. Materialia, 4, 203 (2018). DOI: 10.1016/j.mtla.2018.09.017
  21. S.K. Tripathy, M. Christy, N.H. Park, E.K. Suh, S. Anand, Y.T. Yu. Mater. Lett., 62 (6-7), 1006 (2008). DOI: 10.1016/j.matlet.2007.07.037
  22. Y. Hao, A.S. Teja. J. Mater. Res., 18 (2), 415 (2003). DOI: 10.1557/JMR.2003.0053
  23. K. Kanie, Y. Tsujikawa, A. Muramatsu. Mater. Transactions, 58 (7), 1014 (2017). DOI: 10.2320/matertrans.M2017090
  24. L. Lin, T. Liu, B. Miao, W. Zeng. Mater. Lett., 102, 43 (2013). DOI: 10.1016/j.matlet.2013.03.103
  25. S. Cao, W. Zeng, H. Long, H. Zhang. Mater. Lett., 159, 385 (2015). DOI: 10.1016/j.matlet.2015.07.045
  26. S. Virgin Jeba, S. Sebastiammal, S. Sonia, A. Lesly Fathima. Inorganic and Nano- Metal Chemistry, 51 (10), 1431 (2020). DOI: 10.1080/24701556.2020.1837163
  27. M. Drofenik, I. Ban, D. Makovec, A. v Znidarv siv c, Z. Jagliv cic, D. Hanv zel, D. Lisjak. Mater. Chem. Phys., 127 (3), 415 (2011). DOI: 10.1016/j.matchemphys.2011.02.037
  28. D. Primc, D. Makovec, D. Lisjak, M. Drofenik. Nanotechnology, 20 (31), 315605 (2009). DOI: 10.1088/0957-4484/20/31/315605
  29. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati. Ceram. Intern., 40 (5), 7279 (2014). DOI: 10.1016/j.ceramint.2013.12.068
  30. Y. Li, A. Xia, C. Jin. Synthesis, J. Mater. Sci.: Mater. Electron., 27, 10864 (2016). DOI: 10.1007/s10854-016-5195-9
  31. R.E. El Shater, E.H. El-Ghazzawy, M.K. El-Nimr. J. Alloys Compounds, 739, 327 (2018). DOI: 10.1016/j.jallcom.2017.12.228
  32. W.Y. Zhao, P. Wei, X.Y. Wu, W. Wang, Q.J. Zhang. J. Appl. Phys., 103 (6), 3902 (2008). DOI: 10.1063/1.2884533
  33. S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby. Phys. B: Condensed Matter., 426, 137 (2013). DOI: 10.1016/j.physb.2013.06.026
  34. S. Ram. Phys. Rev. B, 51 (10), 6280 (1995). DOI: 10.1103/PhysRevB.51.6280
  35. S. Hasan, B. Azhdar. Results in Physics, 42, 105962 (2022). DOI: 10.1016/j.rinp.2022.105962
  36. K. Sajilal, A.M.E. Raj. Optik, 127 (3), 1442 (2016). DOI: 10.1016/j.ijleo.2015.11.026
  37. J. Huang, H. Zhuang, W.L. Li. Mater. Res. Bull., 38 (1), 149 (2003). DOI: 10.1016/S0025-5408(02)00979-0
  38. X. Wang, Y. Ye, X. Wu, J.R. Smyth, Y. Yang, Z. Zhang, Z. Wang. Phys. Chem. Minerals, 46, 51 (2019). DOI: 10.1007/s00269-018-0986-6
  39. S.A. Memon, W. Liao, S. Yang, H. Cui, S.F.A. Shah. Materials, 8 (2), 499 (2015). DOI: 10.3390/ma8020499
  40. O. Kubo, T. Ido, H. Yokoyama, Y. Koike. J. Appl. Phys., 57 (8), 4280 (1985). DOI: 10.1063/1.334585
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru