Kostishin V. G.
1, Mironovich A. Yu.
1, Al-Khafaji H. I.
1, Skorlupin G. A.
1, Savchenko E. S.
1, Ril A. I.
21National University of Science and Technology MISiS, Moscow, Russia
2Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
Email: amironovich24@gmail.com
In this work, nanoscale powders of Co- and Ni-substituted barium hexaferrites were obtained by hydrothermal synthesis (BaFe12-xCoxO19 and BaFe12-xNixO19 with x=0.1, 0.3, 0.5). The obtained samples were analyzed by several methods, including XRD, EDX, VSM, FTIR and TEM. It is shown that despite the close chemical nature of Co2+ and Ni2+, the effect of substitution of Fe3+ by these elements is completely different. Thus, nickel has virtually no effect on the shape and size of the resulting BaFe12-xNixO19 particles (plate-shaped crystallites with a diameter of about 200 nm and a thickness of 60 nm). With an increase in the nickel concentration, the magnetic parameters of the resulting ferrites decrease almost linearly. Cobalt, on the contrary, in a certain concentration leads to a significant change in the morphology of the particles (thinning of the crystallites to 30 nm or less), resulting in a sharp decrease in the coercive force of the resulting powders. This effect is due to the fact that cobalt promotes the formation of the BaFe12-xCoxO19 phase directly during the hydrothermal treatment of the precursors, whereas additional high-temperature treatment is required to form BaFe12-xNixO19 and BaFe12O19. Keywords: barium hexaferrite, hydrothermal synthesis, substituted hexaferrite, Mossbauer spectroscopy, magnetic measurements.
- R.C. Pullar. Progr. Mater. Sci., 57 (7), 1191 (2012). DOI: 10.1016/j.pmatsci.2012.04.001
- J.J. Went. Philips Techn. Rev., 13, 194 (1952). DOI: 10.2497/jjspm.57.41
- R.I. Shakirzyanov, N.O. Volodina, A.L. Kozlovskiy, M.V. Zdorovets, D.I. Shlimas, D.B. Borgekov, Y.A. Garanin. J. Compos. Sci., 7 (10), 411 (2023). DOI: 10.3390/jcs7100411
- J.B. Baruah. Inorganica Chimica Acta, 560, 121838 (2023). DOI: 10.1016/j.ica.2023.121838
- S. Prabhu, M. Maruthapandi, A. Durairaj, S. Arun Kumar, J.H. Luong, R. Ramesh, A. Gedanken. ACS Appl. Energy Mater., 6 (3), 1321 (2023). DOI: 10.1021/acsaem.2c03067
- E. van der Maas, T. Famprikis, S. Pieters, J.P. Dijkstra, Z. Li, S.R. Parnell, R.I. Smith, E.R.H. van Eck, S. Ganapathy, M. Wagemaker. J. Mater. Chem. A, 11 (9), 4559 (2023). DOI: 10.1039/D2TA08433C
- B. Sawicki, E. Tomaszewicz, M. Guzik, T. Gron, M. Oboz, H. Duda, S. Pawlus, P. Urbanowicz. Ceram. Intern., 49 (1), 944 (2023). DOI: 10.1016/j.ceramint.2022.09.068
- V.G. Kostishin, V.V. Korovushkin, K.V. Pokholok, A.V. Trukhanov, I.M. Isaev, A.Yu. Mironovich, M.A. Darwish. Phys. Solid State, 63 (11), 1680 (2021). DOI: 10.1134/S1063783421100176
- V.G. Kostishin, V.V. Korovushkin, I.M. Isaev, A.Yu. Mironovich, S.V. Trukhanov, V.A. Turchenko, K.A. Astapovich, A.V. Trukhanov. Phys. Solid State, 63, 253 (2021). DOI: 10.1134/S106378342102013X
- V.V. Korovushkin, A.V. Trukhanov, V.G. Kostishin, I.M. Isaev, S.V. Trukhanov, K.A. Astapovich, A.Yu. Mironovich. Inorganic Mater., 56, 707 (2020). DOI: 10.1134/S0020168520070080
- Y. Yang, S. Feng, X. Kan, Q. Lv, A.V. Trukhanov, S.V. Trukhanov. Chem. Select, 6 (3), 470 (2021) DOI: 10.1002/slct.202002620
- W. Zhang, J. Li, S. Yi, P. Zu, J. Wu, J. Lin, M. Li, W. Su. J. Alloys Compounds, 871, 159563 (2021). DOI: 10.1016/j.jallcom.2021.159563
- Y. Slimani, B. Unal, M.A. Almessiere, A.D. Korkmaz, A. Baykal. Mater. Chem. Phys., 260, 124162 (2021). DOI: 10.1016/j.matchemphys.2020.124162
- D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, S.A. Gudkova, I.V. Chumanov, L.I. Isaenko, R. Niewa. J. Alloys Compounds, 628, 480 (2015). DOI: 10.1016/j.jallcom.2014.12.124
- C. Liu, X. Kan, F. Hu, X. Liu, S. Feng, J. Hu, W. Wang, K.M.U. Rehman, M. Shezad, C. Zhang, H. Li, S. Zhou, Q. Wu. J. Alloys Compounds, 784, 1175 (2019). DOI: 10.1016/j.jallcom.2019.01.112
- K. Pubby, S.B. Narang, S.K. Chawla, P. Kaur. J. Superconductivity Novel Magnetism, 30, 3465 (2017). DOI: 10.1007/s10948-017-4141-2
- N. Doebelin, R. Kleeberg. J. Appl. Crystall., 48 (5), 1573 (2015). DOI: 10.1107/S1600576715014685
- M.C. Dimri, H. Khanduri, P. Agarwal, J. Pahapill, R. Stern. J. Magn. Magn. Mater., 486, 165278 (2019). DOI: 10.1016/j.jmmm.2019.165278
- R.D. Shannon, C.T. Prewitt. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 25 (5), 925 (1969). DOI: 10.1107/S0567740869003220
- F.H. Gj rup, M. Saura-Muzquiz, J.V. Ahlburg, H.L. Andersen, M. Christensen. Materialia, 4, 203 (2018). DOI: 10.1016/j.mtla.2018.09.017
- S.K. Tripathy, M. Christy, N.H. Park, E.K. Suh, S. Anand, Y.T. Yu. Mater. Lett., 62 (6-7), 1006 (2008). DOI: 10.1016/j.matlet.2007.07.037
- Y. Hao, A.S. Teja. J. Mater. Res., 18 (2), 415 (2003). DOI: 10.1557/JMR.2003.0053
- K. Kanie, Y. Tsujikawa, A. Muramatsu. Mater. Transactions, 58 (7), 1014 (2017). DOI: 10.2320/matertrans.M2017090
- L. Lin, T. Liu, B. Miao, W. Zeng. Mater. Lett., 102, 43 (2013). DOI: 10.1016/j.matlet.2013.03.103
- S. Cao, W. Zeng, H. Long, H. Zhang. Mater. Lett., 159, 385 (2015). DOI: 10.1016/j.matlet.2015.07.045
- S. Virgin Jeba, S. Sebastiammal, S. Sonia, A. Lesly Fathima. Inorganic and Nano- Metal Chemistry, 51 (10), 1431 (2020). DOI: 10.1080/24701556.2020.1837163
- M. Drofenik, I. Ban, D. Makovec, A. v Znidarv siv c, Z. Jagliv cic, D. Hanv zel, D. Lisjak. Mater. Chem. Phys., 127 (3), 415 (2011). DOI: 10.1016/j.matchemphys.2011.02.037
- D. Primc, D. Makovec, D. Lisjak, M. Drofenik. Nanotechnology, 20 (31), 315605 (2009). DOI: 10.1088/0957-4484/20/31/315605
- Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati. Ceram. Intern., 40 (5), 7279 (2014). DOI: 10.1016/j.ceramint.2013.12.068
- Y. Li, A. Xia, C. Jin. Synthesis, J. Mater. Sci.: Mater. Electron., 27, 10864 (2016). DOI: 10.1007/s10854-016-5195-9
- R.E. El Shater, E.H. El-Ghazzawy, M.K. El-Nimr. J. Alloys Compounds, 739, 327 (2018). DOI: 10.1016/j.jallcom.2017.12.228
- W.Y. Zhao, P. Wei, X.Y. Wu, W. Wang, Q.J. Zhang. J. Appl. Phys., 103 (6), 3902 (2008). DOI: 10.1063/1.2884533
- S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby. Phys. B: Condensed Matter., 426, 137 (2013). DOI: 10.1016/j.physb.2013.06.026
- S. Ram. Phys. Rev. B, 51 (10), 6280 (1995). DOI: 10.1103/PhysRevB.51.6280
- S. Hasan, B. Azhdar. Results in Physics, 42, 105962 (2022). DOI: 10.1016/j.rinp.2022.105962
- K. Sajilal, A.M.E. Raj. Optik, 127 (3), 1442 (2016). DOI: 10.1016/j.ijleo.2015.11.026
- J. Huang, H. Zhuang, W.L. Li. Mater. Res. Bull., 38 (1), 149 (2003). DOI: 10.1016/S0025-5408(02)00979-0
- X. Wang, Y. Ye, X. Wu, J.R. Smyth, Y. Yang, Z. Zhang, Z. Wang. Phys. Chem. Minerals, 46, 51 (2019). DOI: 10.1007/s00269-018-0986-6
- S.A. Memon, W. Liao, S. Yang, H. Cui, S.F.A. Shah. Materials, 8 (2), 499 (2015). DOI: 10.3390/ma8020499
- O. Kubo, T. Ido, H. Yokoyama, Y. Koike. J. Appl. Phys., 57 (8), 4280 (1985). DOI: 10.1063/1.334585