The spall strength of MPG-8 and I-3 graphites under shock loading up to 2 GPa
Savinykh A.S.
1, Garkushin G. V.
1, Razorenov S. V.
1, Zhukov A. N.
11Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: savas@ficp.ac.ru, garkushin@ficp.ac.ru, razsv@ficp.ac.ru, azhukov@icp.ac.ru
The spall strength of fine-grained pressed graphite MPG-8 and high-strength isotropic graphite I-3 were measured under shock wave loading with an amplitude not exceeding 2 GPa. Using the VISAR laser Doppler velocimeter, the structure of compression and rarefaction waves in graphite was recorded in experiments. It was found that with an increase in the maximum compression stress, the spall strength of graphite MPG-8 increases significantly, while for graphite I-3 - it does not change. The value of the Hugoniot elastic limit of the studied graphites was measured at 0.5 GPa, and a strong dependence of the velocity of the compaction wave on the maximum compression stress was shown. Keywords: Graphite, shock waves, deformation, spall strength, Hugoniot.
- S.E. Vyatkin, A.N. Deev, V.G. Nagorny, V.S. Ostrovsky, A.M. Sigarev, T.A. Sokker. Yaderny grafit (Atomizdat, M., 1967) (in Russian)
- E.I. Zhmurikov, I.A. Bubnenkov, V.V. Dremov, S.I. Samarin, A.S. Pokrovsky, D.V. Kharkov. Grafir v nauke i yadernoy tekhnike (Novosibirsk, 2013) (in Russian)
- Y.S. Virgilyev, A.N. Seleznev, A.A. Sviridov, I.P. Kalyagina. Russian Chemical Journal, 50 (1), 4 (2006)
- A.V. Bushuev, A.F. Kozhin, E.V. Petrova, V.N. Zubarev, T.B. Alieva, N.A. Girke. Radioaktivny reaktorny grafit (NIYaU MIFI, M., 2015) (in Russian)
- Graphite properties and characteristics for industrial applications (Entegris Poco Materials, Texas, 2015)
- L. Peroni, M. Scapin, F. Carra, N. Mariani. Key Eng. Mater., 569-570, 103 (2013). DOI: 10.4028/www.scientific.net/KEM.569-570.103
- D. Hebert, G. Seisson, J.-L. Ruller, I. Bertron, L. Hallo, J.-M. Chevalier, C. Thessieux, F. Guillet, M. Boustie, L. Berthe. Philos. Trans. R Soc. London, Ser. A, 375, 2085 (2017)
- G. Seisson, G. Prudhomme, P.-A. Frugier, D. Hebert, E. Lescoute, A. Sollier, L. Videau, P. Mercier, M. Boustie, L. Berthe. Int. J. Impact. Eng., 91, 68 (2016). DOI: 10.1016/j.ijimpeng.2015.12.012
- R.S. Belikov, I.K. Krasyuk, T. Rienecker, A.Yu. Semenov, O.N. Rosmej, I.A. Stuchebryukhov, M. Tomut, K.V. Khishchenko, A. Schoenle. Quant. Electron., 45 (5), 421 (2015). DOI: 10.1070/QE2015v045n05ABEH015759
- A. Morena, L. Peroni. Materials, 14, 7079 (2021). DOI: 10.3390/ma14227079
- G. Seisson, D. Hebert, I. Bertron, L. Videau, P. Combis, L. Berthe, M. Boustie. J. Phys. Conf. Ser., 500, 112057 (2014). DOI: 10.1088/1742-6596/500/11/112057
- A.C. Larson, R.B. Von Dreele. General structure analysis system (GSAS) (Los Alamos National Laboratory Report, LAUR 86-748, 2004)
- S.V. Tsybulya, S.V. Cherepanova. Vvedenie v strukturny analys nanokristallov. training guide (NGU, Novosibirks, 2008) (in Russian)
- A.V. Kurdyumov, V.F. Britun, N.K. Borimerchuk, V.V. Yarosh. Martensitnyye i diffuzionnyye prevrashcheniya v uglerode i nitride bora pri udarnom szhatii (Kupriyanova, Kiyev, 2005) (in Russian)
- L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43, 4669 (1972). DOI: 10.1063/1.1660986
- Ya.B. Zel'dovich, Yu.P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Fizmatlit, M., 2008), (in Russian)
- N.L. Coleburn. J. Chem. Phys., 40, 71 (1964). DOI: 10.1063/1.1724896
- R.F. Trunin, L.F. Gudarenko, M.V. Zhernokletov, G.V. Simakov, Eksperimental'nye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veshchestv (RFYaTs-VNIIEF, Sarov, 2006) (in Russian)
- E.B. Zaretsky, G.I. Kanel. J. Appl. Phys., 117, 195901 (2015). DOI: 10.1063/1.4921356
- T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin. Spall Fracture (Springer, 2003)
- G.I. Kanel. Intern. J. Fracture, 163 (1-2), 173 (2010). DOI: 10.1007/s10704-009-9438-0