Features of increasing the volume concentration of hydrogen in LiNbO3 crystals
Yatsenko A. V.1, Yagupov S. V.1, Shul'gin V. F.1, Yatsenko A. A.1
1Vernadskii Crimean Federal University, Simferopol, Russia
Email: yatsenko_av53@mail.ru
The features of increasing the volume concentration of hydrogen in LiNbO3 crystals of congruent composition using a previously proposed method have been studied. After a single treatment of a LiNbO3 crystal of congruent composition in adipic acid and subsequent annealing in humid air at T = 973 K, a satisfactory inhomogeneity of the hydrogen distribution throughout the volume of the sample with dimensions of 5.9x 5.8x 5.8 mm, which should significantly improve when the annealing temperature is increased to 1023 K. It has been established that repeated treatments lead to a progressive increase in the volume concentration of hydrogen in the sample, but this process is not linear due to an increase in the reverse diffusion of hydrogen from the surface modified layers into the surrounding air. It has been shown that the value of the volume concentration of hydrogen c H affects the structure of the IR absorption spectrum of OH-- groups in LiNbO3 crystals of congruent composition, and with increasing c H the probability of localization of H+ ions in undistorted NbNbO6 octahedra increases. Keywords: LiNbO3, hydrogen, diffusion, IR spectroscopy.
- T.R. Volk, M. Wohlecke. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008)
- I.F. Kanaev, V.K. Malinovski\^i, N.V. Surovtsev. Phys. Solid State, 42 (11), 2142 (2000). DOI: 10.1134/1.1324054
- K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Kratzig. Phys. Rev. B, 56, 1225 (1997). DOI: 10.1103/PhysRevB.56.1225
- H. Vormann, G. Weber, S. Kapphan, E. Kratzig. Solid St. Commun., 40, 543 (1981). DOI: 10.1016/0038-1098(81)90569-X
- J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Diegues. Adv. Phys., 45, 349 (1996). DOI: 10.1080/00018739600101517
- A.V. Yatsenko, S.V. Yagupov, V.F. Shul'gin, A.A. Yatsenko. Tech. Phys., 68 (5), 629 (2023). DOI: 10.1134/S1063784217070271
- A.A. Blistanov. Crystals for Quantum and Nonlinear Optics, 2nd ed. (MISIS Publisher, M., 2007)
- T. Kohler, E. Mehner, J. Hanzig, G. Gartner, H. Stocker, T. Leisegang, D.C. Meyer. J. Solid St. Chem., 244, 108 (2016). DOI: 10.1016/j.jssc.2016.09.017
- T. Kohler, E. Mehner, J. Hanzig, G. Gartner, C. Funke, a Y. Joseph, T. Leisegang, H. Stocker, D.C. Meyer. J. Mater. Chem. C, 9, 2350 (2021). DOI: 10.1039/d0tc05236a
- Y. Kong, J. Xu, W. Zhang, G. Zhang. Phys. Lett. A., 250, 211 (1998). DOI: 10.1016/S0375-9601(98)00688-4
- M. Engelsberg, R.E. de Souza, L.H. Pacobahyba, G.C. do Nascimento. Appl. Phys. Lett., 67, 359 (1995). DOI: 10.1063/1.114628
- S. Klauer, M. Wohlecke, S. Kapphan. Phys. Rev. B, 45, 2786 (1992). DOI: 10.1103/physrevb.45.2786
- K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Z. Szaller, K. Polgar. Appl. Phys. Rev., 2, 040601 (2015). DOI: 10.1063/1.4929917
- H. Chen, L. Shi, W. Yan, G. Chen, J. Shen, Y. Li. Chin. Phys. B, 18, 2372 (2009). DOI: 10.1088/1674-1056/18/6/042
- L. Shi, W. Yan, Y. Kong. Eur. Phys. J. Appl. Phys., 40, 77 (2007). DOI: 10.1051/epjap:2007124
- A.V. Yatsenko, S.V. Yagupov, M.N. Palatnikov, N.V. Sidorov, O.V. Palatnikova, V.F. Shul'gin. Solid State Ionics, 408, 116508 (2024). DOI: 10.1016/j.ssi.2024.116508
- A.V. Yatsenko, A.S. Pritulenko, S.V. Yevdokimov, D.Yu. Sugak, I.I. Syvorotka, Yu.D. Suhak, I.M. Solskii, M.M. Vakiv. Solid St. Phenom., 230, 233 (2015). DOI: 10.4028/www.scientific.net/SSP.230.233
- M. Wohlecke, L. Kovacs. Critical Rev. Solid State Mater. Sci., 26 (1), 1 (2001). DOI: 10.1080/20014091104161
- S.M. Kostritskii, S.V. Rodnov, Yu.N. Korkishko, V.A. Fedorov, O.G. Sevostyanov. Ferroelectrics, 440, 47 (2012). DOI: 10.1080/00150193.2012.741943
- J.M. Zavada, H.C. Casey, R.J. States, S.V. Novak, A. Loni. J. Appl. Phys., 77, 2697 (1995). DOI: 10.1063/1.358738
- B.I. Boltaks. Diffusion in semiconductors (Academ. Press, NY., 1963)
- J. Rams, J.M. Cabrera. J. Opt. Soc. Am. B, 16 (3), 401 (1999). DOI: 10.1364/JOSAB.16.000401
- S. Kapphan, A. Breitkopf. Phys. Stat. Sol. (a), 133, 159 (1992). DOI: 10.1002/pssa.2211330117
- B.I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres. Phys. Rev. B, 57 (20), 12792 (1998). DOI: 10.1103/PhysRevB.57.12792
- E.M. de Miguel-Sanz, M. Carrascosa, L. Arizmendi. Phys. Rev. B, 65, 165101 (2002). DOI: 10.1103/PhysRevB.65.165101
- W. Bollmann. Phys. Stat. Sol. (a), 104, 643 (1987). DOI: 10.1002/pssa.2211040215
- L. Kovacs, K. Polgar, R. Capelletti, C. Mora. Phys. Stat. Sol. (a), 120, 97 (1990). DOI: 10.1002/pssa.2211200107
- L. Dorrer, P. Tuchel, E. Huger, R. Heller, H. Schmidt. J. Appl. Phys., 129, 135105 (2021). DOI: 10.1063/5.0047606
- C. Kofahl, L. Dorrer, H. Wulfmeier, H. Fritze, S. Ganschow, H. Schmidt. Chem. Mater., 36, 1639 (2024). DOI: 10.1021/acs.chemmater.3c02984
- A.V. Yatsenko, S.V. Yevdokimov, A.A. Yatsenko. Ferroelectrics, 576, 157 (2021). DOI: 10.1080/00150193.2021.1888274
- W.X. Hou, T.C. Chong. Ferroelectric Lett., 20, 119 (1995). DOI: 10.1080/07315179508204292
- H. Nagata, T. Sakamoto, H. Honda, J. lchikawa, E.M. Haga, K. Shima, N. Haga. J. Mater. Res., 11 (8), 2085 (1996). DOI: 10.1557/JMR.1996.0262
- L. Kovacs, M. Wohlecke, A. Jovanovic, K. Polgar, S. Kapphan. J. Phys. Chem. Sol., 52 (6), 797 (1991). DOI: 10.1016/0022-3697(91)90078-E
- A. Yatsenko, S. Yevdokimov, M. Palatnikov, N. Sidorov. Ceramics, 6, 432 (2023). DOI: 10.3390/ceramics6010025
- P. Lerner, C. Legras, J.P. Dumas. J. Cryst. Growth, 3 (4), 231 (1968). DOI: 10.1016/0022-0248(68)90139-5
- N. Zotov, F. Frey, H. Boysen, H. Lehnert, A. Horsteiner, B. Strauss, R. Sonntag, H.M. Mayer, F. Guthof, D. Hohlwein. Acta Cryst. B, 51, 961 (1995). DOI: 10.1107/S0108768195004216