Features of increasing the volume concentration of hydrogen in LiNbO3 crystals
Yatsenko A. V.1, Yagupov S. V.1, Shul'gin V. F.1, Yatsenko A. A.1
1Vernadskii Crimean Federal University, Simferopol, Russia
Email: yatsenko_av53@mail.ru

PDF
The features of increasing the volume concentration of hydrogen in LiNbO3 crystals of congruent composition using a previously proposed method have been studied. After a single treatment of a LiNbO3 crystal of congruent composition in adipic acid and subsequent annealing in humid air at T = 973 K, a satisfactory inhomogeneity of the hydrogen distribution throughout the volume of the sample with dimensions of 5.9x 5.8x 5.8 mm, which should significantly improve when the annealing temperature is increased to 1023 K. It has been established that repeated treatments lead to a progressive increase in the volume concentration of hydrogen in the sample, but this process is not linear due to an increase in the reverse diffusion of hydrogen from the surface modified layers into the surrounding air. It has been shown that the value of the volume concentration of hydrogen c H affects the structure of the IR absorption spectrum of OH-- groups in LiNbO3 crystals of congruent composition, and with increasing c H the probability of localization of H+ ions in undistorted NbNbO6 octahedra increases. Keywords: LiNbO3, hydrogen, diffusion, IR spectroscopy.
  1. T.R. Volk, M. Wohlecke. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008)
  2. I.F. Kanaev, V.K. Malinovski\^i, N.V. Surovtsev. Phys. Solid State, 42 (11), 2142 (2000). DOI: 10.1134/1.1324054
  3. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Kratzig. Phys. Rev. B, 56, 1225 (1997). DOI: 10.1103/PhysRevB.56.1225
  4. H. Vormann, G. Weber, S. Kapphan, E. Kratzig. Solid St. Commun., 40, 543 (1981). DOI: 10.1016/0038-1098(81)90569-X
  5. J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Diegues. Adv. Phys., 45, 349 (1996). DOI: 10.1080/00018739600101517
  6. A.V. Yatsenko, S.V. Yagupov, V.F. Shul'gin, A.A. Yatsenko. Tech. Phys., 68 (5), 629 (2023). DOI: 10.1134/S1063784217070271
  7. A.A. Blistanov. Crystals for Quantum and Nonlinear Optics, 2nd ed. (MISIS Publisher, M., 2007)
  8. T. Kohler, E. Mehner, J. Hanzig, G. Gartner, H. Stocker, T. Leisegang, D.C. Meyer. J. Solid St. Chem., 244, 108 (2016). DOI: 10.1016/j.jssc.2016.09.017
  9. T. Kohler, E. Mehner, J. Hanzig, G. Gartner, C. Funke, a Y. Joseph, T. Leisegang, H. Stocker, D.C. Meyer. J. Mater. Chem. C, 9, 2350 (2021). DOI: 10.1039/d0tc05236a
  10. Y. Kong, J. Xu, W. Zhang, G. Zhang. Phys. Lett. A., 250, 211 (1998). DOI: 10.1016/S0375-9601(98)00688-4
  11. M. Engelsberg, R.E. de Souza, L.H. Pacobahyba, G.C. do Nascimento. Appl. Phys. Lett., 67, 359 (1995). DOI: 10.1063/1.114628
  12. S. Klauer, M. Wohlecke, S. Kapphan. Phys. Rev. B, 45, 2786 (1992). DOI: 10.1103/physrevb.45.2786
  13. K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Z. Szaller, K. Polgar. Appl. Phys. Rev., 2, 040601 (2015). DOI: 10.1063/1.4929917
  14. H. Chen, L. Shi, W. Yan, G. Chen, J. Shen, Y. Li. Chin. Phys. B, 18, 2372 (2009). DOI: 10.1088/1674-1056/18/6/042
  15. L. Shi, W. Yan, Y. Kong. Eur. Phys. J. Appl. Phys., 40, 77 (2007). DOI: 10.1051/epjap:2007124
  16. A.V. Yatsenko, S.V. Yagupov, M.N. Palatnikov, N.V. Sidorov, O.V. Palatnikova, V.F. Shul'gin. Solid State Ionics, 408, 116508 (2024). DOI: 10.1016/j.ssi.2024.116508
  17. A.V. Yatsenko, A.S. Pritulenko, S.V. Yevdokimov, D.Yu. Sugak, I.I. Syvorotka, Yu.D. Suhak, I.M. Solskii, M.M. Vakiv. Solid St. Phenom., 230, 233 (2015). DOI: 10.4028/www.scientific.net/SSP.230.233
  18. M. Wohlecke, L. Kovacs. Critical Rev. Solid State Mater. Sci., 26 (1), 1 (2001). DOI: 10.1080/20014091104161
  19. S.M. Kostritskii, S.V. Rodnov, Yu.N. Korkishko, V.A. Fedorov, O.G. Sevostyanov. Ferroelectrics, 440, 47 (2012). DOI: 10.1080/00150193.2012.741943
  20. J.M. Zavada, H.C. Casey, R.J. States, S.V. Novak, A. Loni. J. Appl. Phys., 77, 2697 (1995). DOI: 10.1063/1.358738
  21. B.I. Boltaks. Diffusion in semiconductors (Academ. Press, NY., 1963)
  22. J. Rams, J.M. Cabrera. J. Opt. Soc. Am. B, 16 (3), 401 (1999). DOI: 10.1364/JOSAB.16.000401
  23. S. Kapphan, A. Breitkopf. Phys. Stat. Sol. (a), 133, 159 (1992). DOI: 10.1002/pssa.2211330117
  24. B.I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres. Phys. Rev. B, 57 (20), 12792 (1998). DOI: 10.1103/PhysRevB.57.12792
  25. E.M. de Miguel-Sanz, M. Carrascosa, L. Arizmendi. Phys. Rev. B, 65, 165101 (2002). DOI: 10.1103/PhysRevB.65.165101
  26. W. Bollmann. Phys. Stat. Sol. (a), 104, 643 (1987). DOI: 10.1002/pssa.2211040215
  27. L. Kovacs, K. Polgar, R. Capelletti, C. Mora. Phys. Stat. Sol. (a), 120, 97 (1990). DOI: 10.1002/pssa.2211200107
  28. L. Dorrer, P. Tuchel, E. Huger, R. Heller, H. Schmidt. J. Appl. Phys., 129, 135105 (2021). DOI: 10.1063/5.0047606
  29. C. Kofahl, L. Dorrer, H. Wulfmeier, H. Fritze, S. Ganschow, H. Schmidt. Chem. Mater., 36, 1639 (2024). DOI: 10.1021/acs.chemmater.3c02984
  30. A.V. Yatsenko, S.V. Yevdokimov, A.A. Yatsenko. Ferroelectrics, 576, 157 (2021). DOI: 10.1080/00150193.2021.1888274
  31. W.X. Hou, T.C. Chong. Ferroelectric Lett., 20, 119 (1995). DOI: 10.1080/07315179508204292
  32. H. Nagata, T. Sakamoto, H. Honda, J. lchikawa, E.M. Haga, K. Shima, N. Haga. J. Mater. Res., 11 (8), 2085 (1996). DOI: 10.1557/JMR.1996.0262
  33. L. Kovacs, M. Wohlecke, A. Jovanovic, K. Polgar, S. Kapphan. J. Phys. Chem. Sol., 52 (6), 797 (1991). DOI: 10.1016/0022-3697(91)90078-E
  34. A. Yatsenko, S. Yevdokimov, M. Palatnikov, N. Sidorov. Ceramics, 6, 432 (2023). DOI: 10.3390/ceramics6010025
  35. P. Lerner, C. Legras, J.P. Dumas. J. Cryst. Growth, 3 (4), 231 (1968). DOI: 10.1016/0022-0248(68)90139-5
  36. N. Zotov, F. Frey, H. Boysen, H. Lehnert, A. Horsteiner, B. Strauss, R. Sonntag, H.M. Mayer, F. Guthof, D. Hohlwein. Acta Cryst. B, 51, 961 (1995). DOI: 10.1107/S0108768195004216
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru