Effect of annealing on the high-strain-rate deformation of copper in Taylor tests
Rodionov E.S. 1, Mayer A.E. 1, Lupanov V.G. 1, Pogorelko V.V. 1, Mayer P.N. 1, Lupitskaya Yu. A.1, Fazlitdinova A.G. 1
1Chelyabinsk State University, Chelyabinsk, Russia
Email: rodionoves.pgd@gmail.com, mayer@csu.ru, victr@csu.ru, vik_ko83@mail.ru, polina.nik@mail.ru, lupitskaya@gmail.com, fazlitdinovaag@mail.ru

PDF
The results of high-velocity impact experiments with cylindrical and profiled samples made of soft annealed copper with impact velocities up to 103-112 m/s are presented in comparison with previous results for hard cold-rolled copper. 3D numerical simulations of the experiments are performed based on the dislocation plasticity model numerically implemented by the method of smoothed particle hydrodynamics (SPH). It is shown that the dislocation plasticity model, which was previously parameterized using machine learning methods for hard cold-rolled copper, can successfully describe the deformation behavior of soft annealed copper when only the initial dislocation density changes to the level typical for annealed metals. At the same time, the shape of the deformed samples and the deformation behavior of cold-rolled and annealed samples differ significantly. It is shown that the proposed model adequately describes the grain refinement as a result of the dynamic deformation. Keywords: dynamic deformation, dislocation plasticity model, material microstructure, deformation behavior, dislocation density.
  1. G.K. Johnson, W.H. Cook. In Proceedings of the 7th International Symposium on Ballistics, The Hague, 19--21, 1983
  2. K.R.S. Vasu, Y.G. Vinith, S.G. Uday, G. Suneesh, M.B. Krishna. Mater. Today Proc, 62 (6), (2022). DOI: 10.1016/j.matpr.2022.04.279
  3. F.J. Zerilli, R.W. Armstrong. J. Appl. Phys., 61, 1987. DOI: 10.1063/1.338024
  4. R.W. Armstrong, W. Arnold, F.J. Zerilli. Metall. Mater. Trans. A, 38, 2007. DOI: 10.1007/s11661-007-9142-5
  5. D.L. Preston, D.L. Tonks, D.C. Wallace. J. Appl. Phys., 93 (1), (2003). DOI: 10.1063/1.1524706
  6. J.D. Colvin, R.W. Minich, D.H. Kalantar. Int. J. Plast., 25, (2009). DOI: 10.1016/j.ijplas.2008.12.008
  7. R.A. Austin, D.L. McDowell. Int. J. Plast., 27, (2011). DOI: 10.1016/j.ijplas.2010.03.002
  8. N.R. Barton, J.V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.-S. Park, B.A. Remington, R.T. Olson. J. Appl. Phys., 109, (2011). DOI: 10.1063/1.3553718
  9. D.J. Luscher, J.R. Mayeur, H.M. Mourad, A. Hunter, M.A. Kenamond. Int. J. Plast., 76, (2016). DOI: 10.1016/j.ijplas.2015.07.007
  10. S. Yao, X. Pei, J. Yu, Q. Wu. Int. J. Plast., 158, (2022). DOI: 10.1016/j.ijplas.2022.103434
  11. V.S. Krasnikov, A.E. Mayer, A.P. Yalovets. Int. J. Plast., 27, (2011). DOI: 10.1016/j.ijplas.2011.02.008
  12. A.E. Mayer, K.V. Khishchenko, P.R. Levashov, P.N. Mayer. J. Appl. Phys., 113, (2013). DOI: 10.1063/1.4805713
  13. E.S. Rodionov, V.G. Lupanov, N.A. Grachyova, P.N. Mayer, A.E. Mayer. Metals, 12, (2022). DOI: 10.3390/met12020264
  14. A.E. Mayer, V.S. Krasnikov, V.V. Pogorelko. Int. J. Plast., 139, (2021). DOI: 10.1016/j.ijplas.2021.102953
  15. N.A. Gracheva, M.V. Lekanov, A.E. Mayer, E.V. Fomin. Mech. Solids., 3, (2021). DOI: 10.31857/S0572329921020082
  16. D.J. Walters, A. Biswas, E.C. Lawrence, D.C. Francom, D.J. Luscher, D.A. Fredenburg, K.R. Moran, C.M. Sweeney, R.L. Sand-berg, J.P. Ahrens, C.A. Bolme. J. Appl. Phys., 124 (20), (2018). DOI: 10.1063/1.5051442
  17. T. Nguyen, D.C. Francom, D.J. Luscher, J.W. Wilkerson. J. Mech. Phys. Solids., 149, (2021). DOI: 10.1016/j.jmps.2020.104284
  18. D. Rivera, J. Bernstein, K. Schmidt, A. Muyskens, M. Nelms, N. Barton, A. Kupresanin, J. Florando. Comput. Mater. Sci., 210, (2022). DOI: 10.1016/j.commatsci.2021.110999
  19. E.S. Rodionov, V.V. Pogorelko, V.G. Lupanov, P.N. Mayer, A.E. Mayer. Materials, 16 (16), (2023). DOI: 10.3390/ma16165602
  20. V.V. Pogorelko, A.E. Mayer, E.V. Fomin, E.V. Fedorov. Int. J. Mech. Sci., 265, (2024). DOI: 10.1016/j.ijmecsci.2023.108912
  21. K. Frydrych, M. Tomczak, S. Papanikolaou. Materials, 17, (2024). DOI: 10.3390/ma17143397
  22. J. Halamka, M. Bartovsak. Eng. Comput., in press, 2024. DOI: 10.1108/EC-02-2024-0166
  23. S.A. Zelepugin, R.O. Cherepanov, N.V. Pakhnutova. Materials, 16 (15), (2023). DOI: 10.3390/ma16155452
  24. D.A. Bilalov, M.A. Sokovikov, V.V. Chudinov, V.A. Oborin, Y.V. Bayandin, A.I. Terekhina, O.B. Naimark. J. Appl. Mech. Tech. Phys., 59 (7), (2018). DOI: 10.1134/S0021894418070027
  25. T. Nguyen, S.J. Fensin, D.J. Luscher. Int. J. Plast., 139, (2021). DOI: 10.1016/j.ijplas.2021.102940
  26. Y.-M. Jeong, S. Hong, J.Y. Won, C. Kim, M.-G. Lee. Metals Mater. Intern., 30 (8), (2024). DOI: 10.1007/s12540-024-01636-6
  27. T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin. Spall Fracture (Springer, NY., 2003)
  28. G.I. Kanel, V.E. Fortov, S.V. Razorenov. Phys. Usp., 50, (2007). DOI: 10.1070/PU2007v050n08ABEH006327
  29. L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43 (11), (1972). DOI: 10.1063/1.1660986
  30. G.I. Kanel, S.V. Razorenov, K. Baumung, J. Singer. J. Appl. Phys., 90, (2001). DOI: 10.1063/1.1374478
  31. J.M. Winey, B.M. LaLone, P.B. Trivedi, Y.M. Gupta. J. Appl. Phys., 106, (2009). DOI: 10.1063/1.3236654
  32. B. Gurrutxaga-Lerma, M.A. Shehadeh, D.S. Balint, D. Dini, L. Chen, D.E. Eakins. Int. J. Plast., 96, (2017). DOI: 10.1016/j.ijplas.2017.05.001
  33. N.V. Saveleva, Y.V. Bayandin, A.S. Savinykh, G.V. Garkushin, S.V. Razorenov, O.B. Naimark. Tech. Phys. Lett., 44, (2018). DOI: 10.1134/S1063785018090286
  34. S.F. Gnyusov, V.P. Rotshtein, A.E. Mayer, V.V. Rostov, A.V. Gunin, K.V. Khishchenko, P.R. Levashov. Int. J. Fract., 199, (2016). DOI: 10.1007/s10704-016-0088-8
  35. S.F. Gnyusov, V.P. Rotshtein, A.E. Mayer, E.G. Astafurova, V.V. Rostov, A.V. Gunin, G.G. Maier. J. Alloys. Compd., 714, (2017). DOI: 10.1016/j.jallcom.2017.04.219
  36. K. Baumung, H.J. Bluhm, B. Goel, P. Hoppe, H.U. Karow, D. Rusch, V.E. Fortov, G.I. Kanel, S.V. Razorenov, A.V. Utkin, O.Yu. Vorobjev. Laser Part. Beams, 14, (1996). DOI: 10.1017/S0263034600009939
  37. K. Baumung, H. Bluhm, G.I. Kanel, G. Muller, S.V. Razorenov, J. Singer, A.V. Utkin. Int. J. Impact. Eng., 25, (2001). DOI: 10.1016/S0734-743X(01)00004-5
  38. E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis, M. Werdiger, I.B. Goldberg. J. Appl. Phys., 83, (1998). DOI: 10.1063/1.367222
  39. I.K. Krasyuk, P.P. Pashinin, A.Y. Semenov, K.V. Khishchenko, V.E. Fortov. Laser Phys., 26, (2016). DOI: 10.1088/1054-660X/26/9/094001
  40. S.I. Ashitkov, P.S. Komarov, E.V. Struleva, M.B. Agranat, G.I. Kanel. JETP Lett., 101, (2015). DOI: 10.1134/S0021364015040049
  41. G.I. Kanel, E.B. Zaretsky, S.V. Razorenov, S.I. Ashitkov, V.E. Fortov. Phys. Usp., 60, (2017). DOI: 10.3367/UFNe.2016.12.038004
  42. B. Zuanetti, S.D. McGrane, C.A. Bolme, V. Prakash. J. Appl. Phys., 123, (2018). DOI: 10.1063/1.5027390
  43. W. Mocko, J. Janiszewski, J. Radziejewska, M. Grazka. Int. J. Impact. Eng., 75, (2015). DOI: 10.1016/j.ijimpeng.2014.08.015
  44. N.V. Pakhnutova, E.N. Boyangin, O.A. Shkoda, S.A. Zelepugin. Adv. Eng. Res., 22, (2022). DOI: 10.23947/2687-1653-2022-22-3-224-231
  45. S.A. Zelepugin, N.V. Pakhnutova, O.A. Shkoda, E.N. Boyangin. Metals, 12, (2022). DOI: 10.3390/met12122186
  46. J. Xu, Q. Liu, Y.F. Xu, S.H. Guo, C. Li, N.B. Zhang, Y. Cai, X.Y. Liu, L. Lu, S.N. Luo. J. Alloys Compd., 936, (2023). DOI: 10.1016/j.jallcom.2022.168261
  47. R.A. Gingold, J.J. Monaghan. Mon. Not. R. Astron. Soc., 181, (1977). DOI: 10.1093/mnras/181.3.375
  48. J.J. Monaghan. Rep. Prog. Phys., 68, (2005). DOI: 10.1088/0034-4885/68/8/R01
  49. J.J. Monaghan. Comput. Phys. Commun., 48, (1998). DOI: 10.1016/0010-4655(88)90026-4
  50. A.E. Mayer, E.S. Rodionov, V.V. Pogorelko, P.N. Mayer. Chelyabinsk Phys. Math. J. 2025. in press
  51. G.A. Merkulova. Metallovedenie i termicheskaya obrabotka tsvetnykh splavov: guide book (Siberian Federal University, Krasnoyarsk, 2008)
  52. N.V. Skripnyak, V.A. Skripnyak. VII European Congress on Computational Methods in Applied Sciences and Engineering (2016). DOI: 10.7712/100016.1818.11099
  53. V.F. Kuropatenko. J. Eng. Phys. Thermophys., 84, (2011). DOI: 10.1007/s10891-011-0457-0
  54. D. Rittel, L.H. Zhang, S. Osovski. J. Mech. Phys. Solids., 107, (2017). DOI: 10.1016/j.jmps.2017.06.016
  55. L.D. Landau, E.M. Lifshitz. Theory of Elasticity; Course of Theoretical Physics (Elsevier, Amsterdam, The Netherlands, 7, 1986)
  56. J.P. Hirth, J. Lothe. Theory of Dislocations (Wiley \& Sons, NY., USA, 1982)
  57. M. Peach, J.S. Koehler. Phys. Rev., 80, (1950). DOI: 10.1103/PhysRev.80.436
  58. A.E. Dudorov, A.E. Mayer. Vestnik Chelyabinskogo gos. un-ta, 39 (254), (2011)
  59. V.S. Krasnikov, A.E. Mayer. Int. J. Plast., 101, (2018). DOI: 10.1016/j.ijplas.2017.11.002
  60. K.V. Khishchenko, A.E. Mayer. Int. J. Mech. Sci., 189, (2021). DOI: 10.1016/j.ijmecsci.2020.105971
  61. V.V. Bulatov, B.W. Reed, M. Kumar. Acta Mater., 65, (2014). DOI: 10.1016/j.actamat.2013.10.057
  62. G. Zhou, Q. Huang, Y. Chen, X. Yu, H. Zhou. Metals, 12, (2022). DOI: 10.3390/met12030451
  63. E.V. Fomin. Metals, 14 (4), (2024). DOI: 10.3390/met14040415
  64. J. Han, V. Vitek, D.J. Srolovitz. Acta Mater., 104, (2016). DOI: 10.1016/j.actamat.2015.11.035
  65. S. Marrone, A. Di Mascio, D. Le Touze. J. Comput. Phys., 310, (2016). DOI: 10.1016/j.jcp.2015.11.059
  66. A. Stukowski. Modell. Simul. Mater. Sci. Eng., 18, (2010). DOI: 10.1088/0965-0393/18/1/015012. http://www.ovito.org
  67. A.E. Mayer, V.S. Krasnikov. ICTAEM 2019. In Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics (Corfu, Greece, 23--26 June 2019, Springer, Manhattan, NY., USA, 8, 2019) DOI: 10.1007/978-3-030-21894-2_12
  68. G.I. Kanel, A.S. Savinykh, G.V. Garkushin, S.V. Razorenov. J. Appl. Phys., 128 (11), (2020). DOI: 10.1063/5.0021212
  69. E.S. Rodionov, A.E. Mayer. Chelyabinsk Phys. Math. J., 8 (3), 399. DOI: 10.47475/2500-0101-2023-8-3-399-409
  70. I.A. Bryukhanov. Int. J. Plast., 165, (2023). DOI: 10.1016/j.ijplas.2023.103599
  71. X. Wu, X. Wang, Y. Wei, H. Song, C. Huang. Int. J. Impact. Eng. 69, (2014). DOI: 10.1016/j.ijimpeng.2014.02.016
  72. M.A. Meyers, U.R. Andrade, A.H. Chokshi. Metall. Mater. Trans. A, 26A, (1995).
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru