Quantum magnetotransport of an electron gas in a triangular quantum well
Kuznetsova I. A. 1, Romanov D. N. 1
1Demidov State University, Yaroslavl, Russia
Email: kuz@uniyar.ac.ru, romanov.yar357@mail.ru

PDF
Expressions for the Hall coefficients and magnetoresistance of a thin semiconductor layer at the boundary of a heterojunction in a transverse magnetic field are obtained using the quantum Liouville equation. The film temperature is selected so that quantum dimensional effects can be considered along the film thickness and Landau levels in the film plane are not considered, that is, in the film plane, the energy of charge carriers changes continuously. The effect of surface scattering of charge carriers is considered through diffuse-mirror Soffer boundary conditions. The dependence of Hall coefficients and magnetoresistance on magnetic field induction, electrochemical potential and roughness parameter is analyzed. Keywords: quantum Liouville equation, Soffer model, Hall coefficient, magnetoresistance coefficient, quantum triangular well.
  1. J. Shi, Z. Li, D.K. Sang, Y. Xiang, J. Li, S. Zhang, H. Zhang. J. Mater. Chem. C, 6 (6), 1291 (2018). DOI: 10.1039/c7tc05460b
  2. R. Singh, H. Kang, H. Shin, J.-Y. Park, H. Seo. Appl. Surf. Sci., 580, 152266 (2022). DOI: 10.1016/j.apsusc.2021.152266
  3. X. Zhou, B. Li, X. Tian, Yu. Jiang, R. Zhao, M. Zhao, Ju. Gao, J. Xing, J. Qiu, G. Liu. J. Phys. D: Appl. Phys., 56, 205304 (2023). DOI: 10.1088/1361-6463/acc53d
  4. E.R. Burmistrov, L.P. Avakyants. ZhETF 163, 5, 669 (2023). (in Russian) DOI: 10.31857/S0044451023050061
  5. Ph. Kuhne, N. Armakavicius, A. Papamichail, D.Q. Tran, V. Stanishev, M. Schubert, P.P. Paskov, V. Darakchieva. Appl. Phys. Lett., 120, 253102 (2022). DOI: 10.1063/5.0087033
  6. M.N.A. Aadit, S.G. Kirtania, F. Afrin, Md.K. Alam, Q.D.M. Khosru. Different Types of Field-Effect Transistors Theory and Applications (2017). DOI: 10.5772/67796
  7. S.B. Soffer. J. Appl. Phys., 38 (4), 1710 (1967). DOI: 10.1063/1.1709746
  8. R.A. Khadar, C. Liu, R. Soleimanzadeh, E. Matioli. IEEE Electron Device Lett., 40, 3, 443 (2019). DOI: 10.1109/LED.2019.2894177
  9. B. Unal. AIP Advances, 2, 042145 (2012). DOI: 10.1063/1.4768275
  10. S. Chatterjee, A.E. Meyerovich. Phys. Rev. B, 81, 245409 (2010). DOI: 10.1103/PhysRevB.81.245409
  11. R.I. Bihun, Z.V. Stasyuk, O.A. Balitskii. Physica B Condens. Matter, 487, 73 (2016). DOI: 10.1016/j.physb.2016.02.003
  12. A.Ya. Shul'man, D.V. Posvyanskii. J. Exp. Theor. Phys., 130, 903 (2020). DOI: 10.1134/S106377612005009X
  13. I.A. Kuznetsova, O.V. Savenko, D.N. Romanov. FTP 55, (in Russian) 9, 789 (2021). DOI: 10.21883/FTP.2021.09.51296.26
  14. I.A. Kuznetsova, D.N. Romanov, O.V. Savenko. Phys. Scr., 98, 015839 (2023). DOI: 10.1088/1402-4896/acad38
  15. J. Xiao, Z. Hong, Z. Roungxiu, J. Zhao. J. Semicond., 34 (7), 072004 (2013). DOI: 10.1088/1674-4926/34/7/072004
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru