
Technical Physics, 2025, Vol. 70, No. 4

05

Quantum magnetotransport of an electron gas in a triangular quantum

well

© I.A. Kuznetsova, D.N. Romanov

Demidov State University,

150003 Yaroslavl, Russia

e-mail: romanov.yar357@mail.ru

Received September 17, 2024

Revised December 20, 2024

Accepted December 25, 2024

Expressions for the Hall coefficients and magnetoresistance of a thin semiconductor layer at the boundary of

a heterojunction in a transverse magnetic field are obtained using the quantum Liouville equation. The film

temperature is selected so that quantum dimensional effects can be considered along the film thickness and

Landau levels in the film plane are not considered, that is, in the film plane, the energy of charge carriers changes

continuously. The effect of surface scattering of charge carriers is considered through diffuse-mirror Soffer boundary

conditions. The dependence of Hall coefficients and magnetoresistance on magnetic field induction, electrochemical

potential and roughness parameter is analyzed.

Keywords: quantum Liouville equation, Soffer model, Hall coefficient, magnetoresistance coefficient, quantum

triangular well.

DOI: 10.61011/TP.2025.04.61208.274-24

Introduction

When electron motion is limited, their energy is quan-

tized. The electron gas that can freely move in two

dimensions, but is limited in the third one, is called two-

dimensional (2DEG). The two-dimensional electron gas

is applied when developing the optoelectronic [1–3] and

ultrahigh-frequency systems [4,5]. In particular, they in-

clude high-electron-mobility field-effect transistors (HEMT).
In comparison with common field-effect transistors, the

HEMTs operate at a higher frequency, with high breakdown

field and with less energy consumption in comparison with

other heterostructures [6].

If the layer (or the film) includes the two-dimensional

electron gas, then the thickness of this film is comparable to

the de Broglie wavelength for the average-speed electrons.

It this case, layer surface irregularities substantially affect the

electrical parameters. With increase of the surface scattering

contribution in comparison with charge carrier scattering in

a volume, the electrical conductance will decrease, while

the Hall coefficient of a thin film will increase. The surface

charge carrier scattering is taken into account via the Soffer

boundary conditions [7], which are obtained as a result of

solution of the quantum-mechanical problem for interaction

of the electron wave with the layer surface. Decrease

of roughness at the boundary of a heterojunction [8] can

increase a HEMT response.

Various approaches are used to take into account quantum

size effects with the surface scattering. The work [9] solves
the Schrödinger equation for a thin metal film using the

Green’s functions. The work [10] provides direct calculation
of the collision integral in a kinetic equation using auto-

correlation functions describing the surface profile. The

said work shows an effect of interference between volume

and boundary scattering in the film. The interference

effects heavily affect temperature (phonon scattering in the

volume) or concentration (impurity scattering) dependences
of conductance. Another source [11] has developed a con-

ductance model for the metal films by calculating the charge

carrier scattering Hamiltonian. The article [12] provides a

method of self-consistent solutions of the Kohn-Sham and

Poisson system of equations, by which the electron density

is determined. The problem solving methods used by the

authors lead to cumbersome mathematical calculations. The

theoretical studies of transfer phenomenon in the nanofilms

are still continuing. The present work determines the Hall

coefficient and the magnetoresistance coefficient using the

Liouville quantum equation [13], by which elements of the

density matrix are found. The work [14] calculates the

galvanomagnetic parameters of a semiconductor nanolayer

for a rectangular quantum well.

The present work determines the Hall coefficient and the

magnetoresistance coefficient in the layer at the boundary of

the heterojunction. The potential well of the heterojunction

for the electron gas can be approximated by a triangular

quantum well [15].

1. Problem formulation

Let us consider the conducting channel (CC) in the

GAN buffer layer of HEMT [6], whose gate and drain

are energized by the gate voltage VG and the drain

voltage Vsd, respectively (Fig. 1). The conducting channel

is a semiconductor layer of the thickness a . The drain
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Figure 1. HEMT structure. S — the source, G — the gate, D —
the drain, Nitride — silicon nitride (Si3 N4), CC — conducting

channel — the two-dimensional electron gas in the GaN layer at

the boundary of the heterostructure.

field with the strength Esd is directed along the layer. The

gate field and the heterojunction internal field with the total

strength EG as well as induction of the external magnetic

field B are recorded perpendicular to the layer. Under

action of the Lorentz force, the side facets of the conducting

channel accumulate charges, which form the electric field of

the strength EH .

The process of heterostructure production is quite compli-

cated. It includes lithography and molecular-beam epitaxy,

which allow sputtering of the film layer-by-layer, checking

the impurity quantity. The form of the triangular quantum

well depends of the AlGaAs composition. However, the

impurities in the quantum well result in widening of levels of

quantization, which can be determined from the Heisenberg

uncertainty principle as h/τ , where τ — the typical

scattering time. If this value is comparable to the energy

difference of the adjacent levels, then the quantization effect

does not occur.

Let us determine the Hall coefficient and transverse

magnetoresistance of the conducting channel (the semicon-

ductor layer). For this purpose, we introduce the Cartesian

system of coordinates, in which the plane XY is directed

along the layer plane, the axis X — is directed along the

strength of the longitudinal electric field Esd, the axis Y —

is directed along the
”
Hall“ strength EH , the axis Z — is

directed along the strength of the transverse electric fieldEG

and along induction of the external magnetic field B (Fig. 2).

We assume that in the plane z = 0 the GAN buffer layer

borders with the AlGAN barrier layer.

It is known from the quantum mechanics that the electron

energy spectrum in the quantum well becomes discrete. The

electron motion is limited along the film thickness, so the

motion is quantized in this direction (Fig. 3). In the first

approximation, the conducting layer in the heterojunction

for the charge carriers can be considered to be the triangular

a
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Figure 2. Conducting channel in GaN.
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Figure 3. Potential well for the charge carries in the layer.

potential well [15]:

U =

{

∞, z < 0,

eEGz , z > 0,

where U — the potential energy, e — the electron charge.

Therefore, the charge carrier energy is as follows:

εn = ε‖ + εz n, ε‖ =
p2

x + p2
y

2m
, εz n =

p2
z n

2m
, n = 1, 2, 3, . . . .

The electron energy along the axis Z [15] has discrete

values

εz n =
γn

2m

(

heEGm
π

)2/3

, n = 1, 2, 3, . . . ,

where h — the Planck constant, m — the effective mass,

γn — zeros of the Airy function:

γn ≈
[

3π

2

(

n − 1

4

)]2/3

, n > 5.
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In this case the projection of the carrier pulse to the

axis Z is

pz n =
√

2mεz n =
√
γn

(

heEGm
π

)1/3

, n = 1, 2, 3, . . . .

The thickness an (n = 1, 2, 3 . . .) is a distance, within

which the charge carriers of the level n, can move along

the axis Z (Fig. 3). The thickness an (n = 1, 2, 3 . . .) is

determined from the condition εz n = eEGan and is

an = γn

(

h2

8π2eEGm

)1/3

.

For the two-dimensional electron gas along the axis Z
there will be only one energy level εz1. Therefore, the

film thickness a with the two-dimensional gas of the charge

carriers shall be within a1 < a < a2.

The layer electrical conductance can be determined using

the Liouville quantum equation:

∂ρ̂

∂t
=

1

i~
[Ĥ, ρ̂],

where ρ̂ — the density matrix operator, Ĥ — the Hamilton

operator, ~ — the Dirac constant, while the brackets mean a

commutator. Diagonal components of the density matrix ρnn

correspond to the distribution function f n, which describes

the state of the charge carriers with projection of the pulse

to the axis Z equal to pz n.

The present work does not take into account the Landau

levels, as small magnetic field or high temperatures are

considered, i.e. the following condition is met:

kBT ≥ hωc

2π
, ωc =

eB
m

,

where kB — the Boltzmann constant, T — the film

temperature, ωc — the cyclotron frequency, B — induction

of the external magnetic field.

From the Liouville equation, a kinetic equation was

obtained in the works [14]:

∂ f n

∂t
+ v

∂ f n

∂r
+ F

∂ f n

∂ p
= −2π

~
Nimp

×
∑

n′

|V0n′|2( f n − f n−n′)δ(εn − εn−n′), (1)

where F = e(Esd + EH) + e[v × B ] — the force acting on

the charge carriers, v — the velocity of electrons (holes),
Nimp — the concentration of impurities, V0n′ — the matrix

element of scattering from the level n to the level n′.

The wave electron function at the quantization level

is a standing wave that is obtained by imposition of

two oncoming running waves which move at the group

velocities v and −v .

In order to take into account charge carrier scattering at

the boundary of the triangular well of the semiconductor

layer we will use the Soffer model [7]:
{

f +
n (z = 0, +vz n) = q1 f −

n (z = 0,−vz n),

f −
n (z = a,−vz n) = q2 f +

n (z = a,+vz n),
(2)

q1,2(g1,2, 2) = exp(−(4πg1,2 cos2)2), g1,2 = gs1,2/λBV ,

where f +
n and f −

n — nonequilibrium functions of distri-

bution of electrons (holes) respectively with positive and

negative projections of the pulse to the axis Z; gs1,2, g1,2

and q1,2 — respectively, the root-mean-square height of the

surface relief, the roughness parameter and the reflection

coefficient for the lower (index 1) and the upper (index 2)
surface of the semiconductor layer; λBV — the de Broglie

wavelength of the charge carrier moving at the average

velocity; 2 — the angle of incidence of the charge carrier

to the internal surface of the layer.

The Soffer model takes into account the dependence of

the reflection coefficient on the roughness parameter of the

incident angle of the charge carrier. This model will allow to

compare the theoretical calculations with the experimental

data, as the roughness parameters is associated with the

root-mean-square height of the surface relief.

The current density formed by the charge carriers at the

level n is

jn = 2e
∫ ∫

v f n
d px d py

h2
· pz n − pz (n−1)

h
.

Therefore, the full current from the charge carriers at all

the energy levels is

In = b

an
∫

0

jndz , I = 2

∞
∑

n=1

In,

where b — the film width (Fig. 2). The film width b
significantly exceeds the de Broglie electron wavelength,

which makes it possible to neglect quantization in the

rectangular potential well of the width b. The number 2 in

the second expression takes into account the charge carriers

both with the positive and the negative projection.

The connection between the current and the strength in

the transverse magnetic field is as follows:

{

Ix = Gxx LEsd + Gxy LEH ,

Iy = Gyx LEsd + Gyy LEH ,

where Ix and Iy — the currents along the axes X and Y ,
L — the film length (Fig. 2). Along the axis Y the Hall

current is compensated by the drift current under effect of

occurred Hall voltage (Iy = 0). Therefore,the full current is

equal to the current along the axis X (Ix = I).
The following film parameters are determined from these

equations:

G =
I

LEsd
= Gx x − Gyx Gxy

Gyy
,

RH =
bEH

IB
= − bGyx

(Gxx Gyy − Gyx Gxy )BL
,
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̹⊥ =
G0 − G
G0B2

, (3)

where G — the integral conductance of the film,

G0 = G(B = 0), RH — the Hall coefficient, ̹ — the

coefficient of transverse magnetoresistance.

2. Transformation of kinetic equation

A solution of the kinetic equation (1) may be written as

follows

f n = f (0)
n + f (1)

n , f (0)
n =

1

1 + exp
(

εn−µ

kBT

) , (4)

f (1)
n = −∂ f (0)

n

∂εn
(cxn px + cyn py) exp(iωt), (5)

where f (0)
n — the equilibrium function of the Fermi-Dirac

distribution, µ — the electrochemical potential, kB — the

Boltzmann constant, T — the temperature, f (1)
n — the non-

equilibrium addition to the distribution function f n, cxn and

cyn — the coefficients depending on the coordinate z .
Taking into account (4), the kinetic equation (1) in relax-

ation time approximation is transformed into the expression

∂ f n

∂t
+ vz n

∂ f n

∂z
+ F

∂ f n

∂ p
= − f n − f (0)

n

τ
, (6)

where τ — the relaxation time that is

τ =
τt

τβ
, τβ =

β

sin(β)
, β =

τV eB
m

,

where τβ — the coefficient taking into account curvature

of the path of the charge carriers in the external magnetic

field (τβ = 1, if there is no magnetic field (B = 0)), τt and

τV — the time of electron relaxation of the electron in the

triangular well and in a macroscopic sample without the

magnetic field, respectively, β — dimensionless induction

of the externa magnetic field. The mean free path λ of the

charge carriers does not take into account the mechanism

of surface scattering, i.e. this length does not depend on

the film thickness and is determined via a structure of the

nanolayer crystal. Therefore, the relaxation times τt and τV

are related to each other via the mean free path λ:

λ = v0V τV = v0tτt,

where v0V and v0t — characteristic velocities of the charge

carriers in the macroscopic sample and in the triangular

well, respectively. We assume that τV does not depend on

the energy (scattering on the neutral impurity atoms in the

volume).
Taking into account (5), the kinetic equation (6) in linear

approximation is transformed into the system of equations

{

τβ
τt

cxn + vz n
∂cxn
∂z = eE0sd

m + eB
m cyn,

τβ
τt

cyn + vz n
∂cyn

∂z = eE0H
m − eB

m cxn.

Taking into account (4), (5), the boundary conditions (2)
are written as follows:

{

c+
in(z = 0,+vz n) = q1c

−
in(z = 0,−vz n),

c−
in(z = a,−vz n) = q2c+

in(z = a,+vz n),

where i = x , y .

3. Concentrations and characteristic
velocities

The concentration ncV and the characteristic velocity v0V

in the bulk sample are determined as follows:

ncV = 2
m3

h3

∫

f 0d
3v, ncVv

2
0V = 2

m3

h3

∫

f 0v
2d3v,

f 0 =
1

1 + exp
(ε−µ)
kBT

, ε =
mv2

2
,

and are equal to

ncV = 2
√

m1m2m3

(

2πkBT
h2

)3/2

F1/2

(

µ

kBT

)

,

v0V =

√

5kBT
m

·
F3/2 ( µ

kBT )

F1/2 ( µ

kBT )
,

Fj(x) =
1

Ŵ( j + 1)

∞
∫

0

t j dt
1 + et−x

, Ŵ( j + 1) =

∞
∫

0

t j e−tdt,

where Fj(x) — the Fermi-Dirac integral with the index j ,
Ŵ( j + 1) — the gamma function.

The velocity projections may be written as the system of

parametric equations:

{

vx =
√

2ε‖/m cosϕ,

vy =
√

2ε‖/m sinϕ,

where 0 ≤ ϕ ≤ 2 — the angle read from the axis X .

For subsequent calculations, it is more convenient to

proceed from the Cartesian coordinates in the pulse space

(vx , vy) to the new coordinates (ε‖, ϕ). In this case, the

transition Jacobian is equal to m.

The concentration ncV and the characteristic velocity v0t

in the conducting channel are determined by the formulae

nct = 2
m2

h2

∑

∫

f (0)
n mdε‖dϕ · pz n − pz (n−1)

h
,

nctv0t
2 =

5

3
· 2m2

h2

∑

∫

(v2
x + v2

y + v2
z n) f (0)

n mdε‖dϕ

× pz n − pz (n−1)

h
and are equal to

nct =
8kBTπ2/3P2(EGhm)1/3m

h3
,
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v0t =

√

10kBT (P3t + P4t)

3mP1t
,

P2t =

∞
∑

n=1

(
√
γn −

√
γn−1) · ln

(

1 + exp
(µ − εz n

kBT

)

)

,

P3t =

∞
∑

n=1

(
√
γn −

√
γn−1) ·

εz n

kBT
· ln

(

1 + exp
(µ − εz n

kBT

)

)

,

P4t =

∞
∑

n=1

(
√
γn −

√
γn−1) · F1

(µ − εz n

kBT

)

4. Calculation of the Hall coefficient and
the transverse magnetoresistance
coefficient

Let’s introduce the dimensionless parameters:

xλ =
λ

λBV
, u‖ =

ε‖

(kBT )
, uµ =

µ

(kBT )
,

δγn =
√
γn −

√
γn−1,

u2
0V =

mv2
0V

(2kBT )
, u2

0t =
mv2

0t

(2kBT )
, k0t =

u0t

u0V
,

EG0 =

(

heEG

πm2

)1/3

/

√

2kBT
m

,

where λBV = h/p0V and p0V = mv0V — the de Broglie

wavelength and the electron pulse in the bulk sample,

EG0 — the dimensionless strength of the transverse electric

field, λ = v0tτ = v0V τV — the mean free path, τV and

τ — the times of relaxation in the bulk sample and the

conducting channel.

By omitting the intermediate calculations, we obtain the

expressions of the Hall coefficient RH and the transverse

magnetoresistance coefficient ̹⊥ (3):

G = GV6qt(xλ, uµ, EG0, β, g2), G0 =
σV λb

L
, σV =

ne2τV

m
,

RH = RHV AHqt(xλ, uµ, EG0, β, g2), RHV =
1

ne
,

̹⊥ = ̹⊥V Dqt(xλ, uµ, EG0, β, g2), ̹⊥V =
(σV RHV )2

6
,

6qt =
k3
0t

F1/2(uµ)π3/2xλu0V

×
(aqtKH1 − KH2

τβ
k0t

)2 + (2bqt KH1 − KH2β)2

KH2τβ(τ 2
β +k2

0tβ
2)−aqtKH1k0t(τ 2

β −k2β2)−4KH1k2
0tτββbqt

,

AHqt =
F1/2(uµ)π

3/2xλu0V

k2
0tβ

×
KH2β(τ 2

β +k2
0tβ

2)+2bqtKH1(τ
2
β −k2

0tβ
2)−2KH1k0tτββaqt

(aqtKH1 − KH2
τβ
k0t

)2 + (2bqtKH1 − KH2β)2
,

Dqt =
6(60qt − 6qt)

60qtβ2
, 60qt = 6qt(β = 0),

KH1 = πE2
g0xλ, KH2 = P1tu

2
0V ,

aqt =
∞
∑

n=1

δγn
√
γn

∞
∫

0

(−∂ f (0)
n

∂u‖

)

u‖A1(�1n, �2n)du‖

bqt =
∞
∑

n=1

δγn
√
γn

∞
∫

0

(−∂ f (0)
n

∂u‖

)

u‖A2(�1n, �2n)du‖

P1t =
∞
∑

n=1

δγn · γn · ln(1 + exp(uµ − 1tn)),

P2t =
∞
∑

n=1

(
√
γn −

√
γn−1) · ln(1 + exp(uµ − 1tn)),

P3t =

∞
∑

n=1

(
√
γn −

√
γn−1) · 1tn · ln(1 + exp(uµ − 1tn)),

P4t =

∞
∑

n=1

(
√
γn −

√
γn−1) · F1(uµ − 1tn).

1tn =
εz n

kBT
= γnE2

G0,

u0V =

√

5

2

F3/2(uµ)

F1/2(uµ)
, u0t =

√

5(P3t + P4t)

3P2t

A1(�1n, �2n) ={(2− q1 − q2) + q1q2(q1 + q2 − 2q1q2)

× exp(−4�1n) − 2(1 − q1)(1 − q2)

× exp(−�1n)(1− q1q2 exp(−2�1n)) cos�2n

−[q1 + q2 − q1q2(q1 + q2)]

× exp(−2�1n) cos(2�2n)}/(1 + q2
1q2

2

× exp(−4�1n) − 2q1q2 exp(−2�1n)

× cos(2�2n),

A2(�1n, �2n) ={(1− q1)(1− q2) exp(−�1n)

×(1 + q1q2 exp(−2�1n))

+[q1 + q2 + q1q2(q1 + q2 − 4)]

× exp(−2�1n) cos(�2n)} sin(�2n)/(1 + q2
1q2

2

× exp(−4�1n) − 2q1q2 exp(−2�1n)

× cos(2�2n),

�1n =
τβu2

0V
√
γn

2k0tπE2
G0xλ

, �2n =
βu2

0V
√
γn

2πE2
G0xλ

,

q2 = exp

(

−
[

4πg2

√
γnEG0

√

u‖ + γnE2
G0

]2
)

, q1 = 1,
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where σV — the static electrical conductance in the bulk

sample, 6qt — dimensionless conductivity, RHV and ̹⊥V —
the Hall coefficient and the magnetoresistance coefficient

in the bulk sample, AHqt and Dqt — the dimensionless

Hall coefficient and the dimensionless magnetoresistance

coefficient. The reflection coefficient of the lower surface

is equal to unity (q1 = 1), since the conducting layer does

not border with another medium below, i.e. the case of

mirror reflection from the film boundary is similar to the

case of absence of this boundary.

in the GaN semiconductor layer, the electron gas may

be assumed to be non-degenerate, i.e. the inequality

euµ = 10−30 ≪ 1 is met, and the Fermi-Dirac distribution

function is as follows

f (0)
n = euµ−u‖−1tn .

In this case, the expression exp(uµ − 1tn) in the logarithm

is a small number. Expanding the logarithm into a Taylor

series, we obtain

ln(1 + exp(uµ − 1tn)) ≈ exp(uµ − 1tn).

Therefore, the expression for conductance is as follows

6qt =
k3
0t

π3/2xλ

√
5/2

×
(aqtKH1 − KH2

τβ
k0t

)2 + (2bqt KH1 − KH2β)2

(KH2τβ(τ 2
β+k2

0tβ
2)−aqtKH1k0t(τ 2

β −k2β2)−4KH1k2
0tτββbqt

,

AHqt =
π3/2xλ

√
5/2

k2
0tβ

×
KH2β(τ 2

β +k2
0tβ

2)+2bqtKH1(τ
2
β −k2

0tβ
2) − 2KH1k0tτββaqt

(

aqtKH1−KH2
τβ
k0t

)2

+ (2bqtKH1 − KH2β)2
,

KH1 = πE2
g0xλ, KH2 =

5

2
P1t,

aqt =

∞
∑

n=1

δγn
√
γne−1tn

∞
∫

0

e−u‖u‖A1(�1n, �2n)du‖

bqt =

∞
∑

n=1

δγn
√
γne−1tn

∞
∫

0

e−u‖u‖A2(�1n, �2n)du‖

P1t =

∞
∑

n=1

δγn · γn · e−1tn,

P2t = P4t =
∞
∑

n=1

δγn · e−1tn,

P3t =

∞
∑

n=1

δγn · 1n · e−1tn .

In case of the two-dimensional electron gas, the n level will

be equal to unity only.

5. Analysis of results

We assume that the mean free path of electrons exceeds

the de Broglie wavelength in 10 times: xλ = 10. The

dimensionless strength of the transverse electric field EG0

is related to the dimensional strength by the relationship

EG = 2.1 · 107E3
G0 [V/m].

The strength of the internal electric field at the boundary

of the heterojunction is about 104 V/m, which corresponds

to the dimensionless value EG0 = 0.1. In laboratory plants,

value of the magnetic field is B = 100mT, which corre-

sponds to the dimensionless value β = 1.7 · 10−3. Relation

between the dimensional and the dimensionless value of the

magnetic field is as follows

B = 57β [T].

Figures 4 and 5 show the dependences of the dimen-

sionless Hall coefficient AHqt and the dimensionless mag-

netoresistance coefficient Dqt on dimensionless induction

β . In case of the mirror boundaries (the curves 1) the

Hall coefficient ceases to depend on the external magnetic

field. With increase of dimensionless induction of the

magnetic field, the curvature radius of the charge carrier

path decreases. It results in increase of a relative number of

the charge carriers not scattering on the film surfaces and
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Figure 4. Dependence of AHqt on dimensionless induction β

when xλ = 10, EG0 = 0.1. The curves 1, 2, 3 are obtained when

g2 = 0, 0.3, 1, respectively.
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when xλ = 10, β = 0.1. The curves 1, 2, 3 are obtained when
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when xλ = 10, β = 0.1. The curves 1, 2, 3 are obtained when
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decrease of contribution of surface scattering to the Hall

coefficient and magnetoresistance.

Figures 6 and 7 show the dependences of the di-

mensionless Hall coefficient AHqt and the dimensionless

magnetoresistance coefficient Dqt on dimensionless strength

EG0. In case of the mirror boundaries (the curves 1)
the magnetoresistance coefficient does not depend on the

form of the quantum well, i.e. on EG0. With increase of

dimensionless strength EG0 the distance between the levels

increases and the first level energy increases εz1 as well.

It is more difficult for electrons to go to the above levels.

It results in reduction of the average energy of the charge

carriers which causes increase of the Hall coefficient and

decrease of magnetoresistance.

Conclusion

The present work has calculate the Hall coefficient and

the magnetoresistance coefficient of the nanolayer in the

transverse magnetic field in approximation of the triangular

potential well. With increase of induction of the external

magnetic field, the Hall coefficient and magnetoresistance

decrease due to reduction of effect of surface charge carrier

scattering. In case of the mirror boundaries the Hall

coefficient depends on the transverse strength of the electric

field, while magnetoresistance becomes a constant value.
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These results can be used when designing the nanoscale

Hall sensors and magnetometer for measurements of the

magnetic fields in the nanosystems.
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