Impact of heat and mass exchange, thermal diffusion and evaporation coefficient on photophoresis of large high-viscose drop
N.V. Malai1, P.V. Sohan1, Yu.I. Shostak1
1Belgorod National Research University, Belgorod, Russia
Email: malay@bsu.edu.ru

PDF
Photophoretic motion of the large high-viscose spherical drop (no matter circulation inside the particle and no forces of interphase surface tension) inside a viscose binary gas mixture at small relative temperature gradients therearound is theoretically described. In a quasistationary approximation, a system of hydrodynamic equations (the Navier-Stokes equations system) and convective equations of heat and mass transfer at small Reynolds and Peclet numbers have been solved. The obtained formulae allow evaluate the contribution of heat and mass transfer, thermal diffusion and direct impact of the evaporation rate on the photophoresis rate, distribution of velocities, temperatures and concentration of a volatile component. It is shown that for highly thermal conductive particles there is photophoresis due to convective heat and mass transfer. Keywords: photophoresis of drops, motion of highly-viscose drops in gas, motion of drops in the electromagnetic radiation field, heat and mass exchange.
  1. F. Ehrenhaft. Ann. der Physik, 361 (10), 132 (1918)
  2. A.A. Cheremisin, A.V. Kushnarenko. J. Aerosol Sci., 62, 26 (2013)
  3. S.I. Grashchenkov. Colloid J., 79 (5), 596 (2017). (in Russian)
  4. N.V. Malai, A.V. Limanskaya, E.R. Shchukin, A.A. Stukalov. ZhTF, (in Russian) 82 (10), 42 (2012)
  5. G.-H. Chen, L. He, M.-Y. Wu, Y.-Q. Li. Phys. Rev. Appl., 10 (5), (2018)
  6. N.V. Malai, E.R. Shchukin. ZhTF, 89 (4), 500 (2019). (in Russian)
  7. B. Schafer, J. Kim, J. Vlassak, D. Keith. ArXiv:2209.08093 [physics.app-ph]. DOI: 10.48550/arXiv.2209.08093
  8. S. Sil, A. Pahi, A.A. Punse, A. Banerjee. Ultrastable ACS Photonics, 11 (1), 159 (2024)
  9. Yu.I. Yalamov, V.S. Galoyan. Dinamika kapel' v neodnorodnykh vyazkikh sredakh (Luis, Erevan, 1985) (in Russian)
  10. M.K. Kuz'min. Vestnik Moskovskogo gos.oblastnogo un-ta. Seriya: Fizika-matematika 4, 155 (2018). (in Russian)
  11. L.D. Landau, E.M. Lifshits. Teoreticheskaya fizika. V. VI. Gidrodinamika (Fizmatlit, M., 2003) (in Russian)
  12. Yu.I. Yalamov. MOPI, M, Dep. v VINITI N 4120-B-90 (1990) (in Russian)
  13. Yu.I. Yalamov, A.B. Poddoskin, A.A. Yushkanov. DAN SSSR, 237 (2), 1047 (1980). (in Russian)
  14. A.B. Poddoskin, A.A. Yushkanov, Yu.I. Yalamov. ZhTF, 52 (11), 2253 (1982). (in Russian)
  15. K.F. Boren, D.R. Khafmen. Pogloshchenie i rasseyanie sveta malymi chastitsami (Mir, M., 1986) (in Russian)
  16. S.A. Beresnev, L.B. Kochneva. Optika atmosfery i okeana, 16 (2), 134 (2003). (in Russian)
  17. A. Naife. Vvedenie v metody vozmushcheniya (Mir, M., 1984) (in Russian)
  18. M. Van-Daik. Metody vozmushchenii d mekhanike zhidkosti (Mir, M., 1967) (in Russian)
  19. N.V. Malai, E.R. Shchukin, Yu.I. Shostak. TVT, 60 (6), 866 (2022). (in Russian)
  20. A.F. Bogatyrev, O.A. Makeenkova, M.A. Nezovitina. Inzhenerno-fizicheskii zhurnal, 87 (2), 1205 (2014). (in Russian)
  21. S.N. D'yakonov, L.V. Kotlyarova, Yu.I. Yalamov. ZhTF, 72 (3), 24 (2002). (in Russian)
  22. M.M. Kuznetsov, M.K. Kuz'min, Yu.D. Kuleshova. Vestnik MGOU. Seriya: Fizika-Matematika 2, 56 (2022). (in Russian)
  23. S. Bretshnaider. Svoistva gazov i zhidkostei. Inzheneernye metody rascheta (Khimia, M., 1966) (in Russian)
  24. N.B. Vargaftik, Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Nauka, M., 1972) (in Russian)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru