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Peclet numbers have been solved. The obtained formulae allow evaluate the contribution of heat and mass transfer,
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there is photophoresis due to convective heat and mass transfer.
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Introduction

Photophoresis in a gas is understood as motion of the

particles in a uniform electromagnetic field. Two types

of photophoresis are distinguished the literature, and they

differ by a physical nature of this phenomenon. In

the first case, photophoresis occurs due to transfer of a

photon pulse to the particle by refraction and reflection,

if the particle is transparent and has a higher refractive

index than a refractive index of the environment. Here,

the photophoretic force depends on the intensity of light

and the particle size. In the second case, photophoresis

occurs due to absorption of the electromagnetic radiation

by the particle surface, thereby resulting in non-uniform

heating of one of the sides of the particle surface. An

uncompensated pulse occurs, i.e. the gas molecules

bounce off the higher-heated particle surface with a higher

velocity (pulse) than from the lower-heated one. Here,

the photophoretic force depends on many factors, in

particular, on intensity and wavelength of incident radiation,

thermal & physical properties of the gas and the particle,

etc.

The present work focuses on the second case of pho-

tophoresis. Here, it is difficult to mathematically describe

the photophoresis phenomenon due to the following fac-

tors. First of all, it is necessary to take into account

an electrodynamic problem of calculating the absorbed

electromagnetic radiation within the particle volume; sec-

ondly, to take into account the heat problem of calculating

temperature fields in the volume and on the particle

surface and, thirdly, to take into account the gas kinetics

problem of calculating the fields of velocities, pressures,

etc.

The study of the photophoresis phenomenon is important

in terms of its application and fundamentality despite the

fact that it was discovered at the beginning of the twentieth

century [1]. New fields of photophoresis application are

being discovered [2–8]: a global problem of struggle against

contamination of the air environment with natural and man-

made aerosols; numerous process applications (processes of
particle sedimentation in channels; fine purification of small

volumes of a gas); chemical industry; application of special

coatings of a given thickness; sampling of aerosols, etc.

The present work is the first one to obtain expressions

which can evaluate impact of heat and mass exchange

(convective terms in the thermal conductivity and diffusion

equations), thermal diffusion and the evaporation coefficient

on the force and the velocity of photophoresis of the highly-

viscose drop in the binary gas medium. It should be noted

that thermal diffusion refers to the so-called
”
weak“ effects

or the effects of the second order of smallness, but it is

quite sensitive to parameters of potentials of intermolecular

interaction. The thermal diffusion phenomenon is crucial

in many processes and has an independent nature, for

example, when purifying and separating mixtures of gases

and isotopes, producing especially pure substances, etc.

1. Main equations and boundary
conditions

The attention is focused on the large [9] highly-viscose

evaporating spherical drop, which is suspended in the gas
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mixture and has a radius R, with a density ρi , thermal

conductivity λi and viscosity µi , and which stays in the field

of flat wave of monochromatic radiation of the intensity

I0 (Fig. 1). The binary gas mixture is described by

two components C1 and C2, the density ρe , the thermal

conductivity λe , the mutual diffusion coefficient D12 and

the viscosity µe . C1 = n1/ne , C2 = n2/ne , ne = n1 + n2,

ρe = ρ1 + ρ2, ρ1 = n1m1, ρ2 = n2m2; m1, n1 and m2, n2 —
the weight and the numerical concentration of molecules of

the first and second components of the mixture. Hereinafter,

the indices
”
e“ and

”
i“ refer to the mixture and the particle,

respectively; the index
”
S“ designates values of the physical

quantities taken at the average temperature of the drop

surface and the index
”
∞“ designates the physical quantities

which characterize the gas medium far away from the drop.

When describing the photophoresis, evaporation is as-

sumed to be slow [10], and the first component C1 in

terms of its physical & chemical composition coincides with

the liquid drop substance, whereas the second component

C2 is believed to be a basic (carrier) one and a diffusion

evaporation mode (C1 ≪ C2) is considered [11].

The molecules of the condensed phase evaporate or

condense an Mach number much smaller than unity.

The drop radius is considered to be invariable (the time

of noticeable change of the drop radius is significantly

higher than the time of relaxation of diffusion and heat

nonuniformities nearby). When moving, the drop keeps its

spherical form, i.e. the forces of surface tension significantly

exceed the force of viscose resistance. An evaporation-

induced reactive effect is taken into account. Due to

smallness of time of thermal and diffusional relaxation, the

process of heat and mass transfer in the particle-gas system

undergoes in a quasi-steady-state and free convection is

neglected (the Grashof number is low). The problem is
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Figure 1. Problem geometry.

solved by a hydrodynamic method, i.e. the equations of

hydrodynamics and heat and mass transfer with respective

boundary conditions are solved.

Let us direct the axis Oz in the direction of an intensity

vector of the electromagnetic field. The problem is solved

in the spherical system of coordinates r, θ, ϕ, whose origin

coincides with a mass center of the evaporating drop. The

distributions of the velocities, the pressures, the relative

concentrations and the temperatures have an axial symmetry

in relation to the axis Oz . With the said selection of

the origin of the system of coordinates, the drop can be

considered to be stationary, and the medium (gas) can

be considered to be moving at the velocity U∞ in a

direction opposite to actual ordered motion of the drop Up

(Up = −U∞, U∞ ‖ Oz ).
The distributions of the fields of the mass velocity Ue , the

pressure Pe , the concentration C1 and the temperatures Te ,

Ti are described by the system of equations (1), (2) [11]:

µe1Ue = ∇Pe, divUe = 0, (1)

ρec p(Ue∇)Te = λe1Te, (Ue∇)C1 = D121C1, 1Ti = −
qi

λi
,

(2)
which was solved with the following boundary conditions

(3)−(7):

y → ∞, Ue = U∞nz , Te = T∞, C1 = C0, Pe = P∞,

U∞ = |U∞|, (3)

y → 0, Ti 6= ∞, (4)

y = 1, Te = Ti,

n1U
(e)
r − D12

n2
em2

Rρe

(

∂C1

∂y
+

KT

Te

∂Te

∂y

)

= α0νne

×
[

C(H)
1S + C∗

1SδTi −C1

]

, (5)

n2U
(e)
r + D12

n2
em1

Rρe

(

∂C1

∂y
+

kT

Te

∂Te

∂y

)

= 0,

U (e)
θ = KT S

νe

RTe

∂Te

∂θ
+ KDS

D12

R
∂C1

∂θ
, (6)

− λe
∂Te

∂y
+ λi

∂Ti

∂y
= −Lm1Rα0νne

[

C(H)
1S + C∗

1SδTi −C1

]

− σ0σ1R(T 4
i − T 4

∞
) + LD12

n2
em1m2

ρe

kT

Te

∂Te

∂y
, (7)

C(H)
1S =

n(H)
1S

ne

∣

∣

∣

∣

Ti =TiS

, C∗

1S =
1

ne

∂n(H)
1S

∂Ti

∣

∣

∣

∣

Ti =TiS

,

ν =
√

kBTe/(2πm1), y = r/R.

Here kB — the Boltzmann constant; U (e)
r , U (e)

θ — the

components of the mass velocity Ue in the spherical system

of coordinates; σ0, σ1, nz — the Stefan-Boltzmann constant,

integral emissivity factor of the drop substance and a unit

vector along the axis Oz ; c p, L, νe — specific heat capacity
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with the constant pressure, specific evaporation heat of

liquid and the kinematic viscosity coefficient; ν — one

quarter of the average arithmetic velocity of thermal motion

of gas molecules of the first class [12]; α0 — the evaporation

coefficient of the liquid drop [10,12]. The experimental

data of the literature shown that the evaporation coefficient

α0 ≤ 1; n(H)
1s (Tis) — the saturated concentration of the

molecules of the first component of the binary gas mixture,

which depends on the average temperature of the drop

surface TiS; KT S , KDS — the coefficients of thermal and

diffusional gliding [13,14]. With coefficients of accommo-

dation for energy and tangential pulse equal to unity, the

numerical values of these coefficients have the following

values: KTS = 1.161, KDS = 0.3 [13,14]; n1U
(e)
r , n2U

(e)
r ,

D12
n2e m2

Rρe

(

∂C1

∂y + kT
Te

∂Te
∂y

)

, D12
n2e m1

Rρe

(

∂C1

∂y + kT
Te

∂Te
∂y

)

— radial

convective, radial diffusional and thermo-diffusional flows

of the respective components, kT — the thermal diffusion

ratio [11]. The value of C0 in the edge condition (3) is

determined via numerical concentrations n1 and n2, while

the undisturbed parameters (T∞, P∞,C0) are determined

in a location of the geometrical center of the drop without

it.

The volume density of the internal heat sources qi , which

cause non-uniform heating of the drop surface, is deter-

mined from the solution of the electrodynamic problem,

for example, in [15,16]. Generally, the volume density can

be represented as qi = 4πna
ns λ0

I0Bk . Here m = n + ia — the

complex refractive index of the drop, ns — the refractive

index of the medium, λ0, I0 — the wavelength and

intensity of incident radiation, Bk — the coordinate function

calculated by the Mi theory [15,16].
The function qi has the simplest form when the drop

absorbs electromagnetic radiation as a black body (radiation
is absorbed in a thin layer with the thickness δ ≪ R, which

is adjacent to the heated part of the drop surface) [15,16]:

qi =







− I0
δ
cos θ, π

2
≤ θ ≤ π, R − δ ≤ r ≤ R,

0, 0 ≤ θ ≤ π
2
.

When describing the photophoresis phenomenon, we use

the disturbance theory [17]. The crucial parameters of the

problem can be taken to compose three dimensionless com-

binations: the Reynolds number, the thermal and diffusion

Peclet numbers [11]. The last two, in turn, are expressed via

the Reynolds number [11], so the Reynolds number is used

as a small problem parameter ε = Re = (ρeRU∞)/µe ≪ 1.

When finding the force and the velocity of photophoresis,

we will be limited by the first small correction by ε.

Let us explain the physical meaning of the edge con-

ditions on the drop surface (y = 1). The temperature

equalities and the continuity of the radial flow of the

first component through the drop surface are taken into

account in the edge condition (5); the edge condition (6)
correspondingly takes into account non-permeability of the

drop surface for the second component of the gas mixture

and known phenomena of thermal and diffusional glidings

proportional to the coefficients KT S , KDS [9,13,14]; and the

condition (7) takes into account continuity of radial flow of

heat with taking into account heat for the phase transition

and radiation.

2. Fields of the velocity, the pressure,
the temperatures and the
concentration of the first component
of the binary gas mixture

The general solutions of the hydrodynamics and heat &

mass transfer when ε ≪ 1, which satisfy the edge conditions

(3)−(7), are as follows

te0(y) = 1 +
Ŵ0

y
, U (e)

r (y, θ) = U∞ cos θ

(

1 +
A1

y3
+

A2

y

)

,

U (e)
θ (y, θ) = −U∞ sin θ

(

1−
A1

2y3
+

A2

2y

)

,

Pe(y, θ) = P∞ + µe
U∞

R
cos θ

A2

y2
,

C10(y) = C0 +
M0

y
, te = Te/T∞,

ti = Ti/T∞, H0 =
R2

3λi T∞

J0,

te(y, θ) = te0(y) + εte1(y, θ),

t∗e (ξ, θ) = t∗e0(ξ) + εt∗e1(ξ, θ),

ti(y, θ) = ti0(y) + εti1(y, θ),

H1 =
R

3λi T∞

J1,

te1(y, θ)=
ω

(T )
0

2y
(N2 − y)+cos θ

[

Ŵ1

y2

ω
(T )
0

2

(

A3+
A2

y
−

A1

y3

)]

,

t∗e0(ξ) = 1, (8)

t∗e1(ξ, θ) =
Ŵ0

ξ
exp

{

PrT

2
ξ(x − 1)

}

,

C1(y, θ) = C10(y) + εC11(y, θ),

C∗

1(ξ, θ) = C∗

10(ξ) + εC∗

11(ξ, θ),

C∗

10(ξ) = C0, J0 =
1

V

∫

V

qi dV,

C11(y, θ) =
ω

(D)
0

2y
(N3 − y)

+ cos θ

[

M1

y2
+
ω

(D)
0

2

(

A3 +
A2

y
−

A1

y3

)]

,

C∗

11(ξ, θ) =
M0

ξ

{

PrD

2
ξ(x − 1)

}

, x = cos θ,
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ψ0(y) = −
R2

2λi T∞

y2

−1
∫

−1

qi dx ,

J1 =
1

V

∫

V

qi z dV,

ti0(y) = B0 +
H0

y
−

1

y

y
∫

1

ψ0(y)dy +

y
∫

1

ψ0(y)

y
dy,

ψ1(y) = −
3R2

2λi T∞

y2

+1
∫

−1

qi xdx ,

V =
4

3
πR3,

ti1(y, θ) =N4 + cos θ

{

B1y +
H1

y2
+

1

3

×

[

y

y
∫

1

ψ1(y)

y2
dy −

1

y2

y
∫

1

yψ1(y)dy

]}

,

Pr T =
µec p

λe
, Pr D =

µe

ρeD12

— the thermal and the diffusional Prandtl number,

ω
(T)
0 = Ŵ0Pr T , ω

(D)
0 = Ŵ0Pr D , z = r cos θ,

δTi(y, θ)
∣

∣

∣

y=1
= T∞ti1(y, θ)

∣

∣

∣

y=1
,

∫

V
qi z dV — the dipole moment of the density of the

thermal sources inside the evaporating drop [1–3,16]. The

integration is across the total volume of the particle and

dV = r2 sin θdrdθdϕ. The constants A1, A2, Ŵ0, Ŵ1, etc.,

which are included in (8), are unambiguously determined

from the boundary conditions (3)−(7).

It should be noted that the convective equations of heat

and mass transfer have been solved by a method of splicing

of asymptotic decompositions [17,18]. It is related to

convective terms in the heat and mass transfer equations.

It is known that [17,18] the usual method of expansion

in the small parameter can not strictly satisfy the edge

conditions at infinity and obtain an exact unified solution

that is uniformly valid for the entire region of the problem.

The splicing method consists of three procedures: con-

struction of external decomposition, construction of internal

decompositions and splicing the external decomposition

with the internal one [17–19]. This procedure made it

possible to obtain asymptotic solutions of the convective

equations of heat and mass transfer (2), which are presented

in (8).

The average value of the temperature on the drop surface

TiS = T∞tiS is determined from solving the following system

of equations:



























teS = tis , Ŵ0= teS−1,M0 =
C (H)

1S −C0−D12
ne

Rα0νn2

kT
teS

(teS−1)

1+ ne
Rα0νn2

D12
,

(teS − 1)

[

1 + L n2e m1m2

ρeλeT∞
D12

kT
teS

]

= R2J0

3λeT∞
+ L nem1Rα0ν

T∞λe

×
[

C0 + M0 −C(H)
1S

]

− σ0σ1
RT 3

∞

λe

(

t4eS − 1
)

.

Here teS = te0(y = 1), tiS = ti0(y = 1).

3. Photophoretic force and velocity.
Analysis of the obtained results

We integrate the stress tensor [11] across the surface,

which makes it possible to find the resultant force acting

thereon. This force F is summed by four forces:

F = Fµ + Fph + Fcht + Fcmt . (9)

Here Fµ — the force of viscose resistance of the medium;

Fph — the photophoretic force, which is proportional to the

dipole moment of the density of the thermal sources J1;

the force Fcht , which is proportional to the coefficient

(due to impact of convective thermal exchange on the

photophoresis) and the force Fcmt , which is proportional

to the coefficient ω
(D)
0 (due to impact of convective mass

exchange on the photophoresis).

At the same time

Fµ = 6πRµeU∞nz , Fph = −6πRµe f phJ1nz ,

Fcht = −6πRµe f chtω
(T )
0 nz , Fcmt = −6πRµe f cmtω

(D)
0 nz ,

f ph =
2

3δλi T∞

{

Ve

teS
KTS + KDS

D12

a1

[

C∗

1ST∞

−2
kT

teS
D12

ne

Rα0νn2

teS + 1

2teS

]

+ 2D12

m1n2
e

ρen2a1

×

[

C∗

1ST∞ +
kT

teS

teS + 1

2tes

]}

,

f cht =
1

4Rδ

{

Ve

teS
KT S

[

λe

λi
+

kT

teS
LD12

m1ne

λi T∞

(

m2

ρe
+

1

n2β1

)]

+ KDS
D12

β1

[

λe

λi
C∗

1ST∞+
kT

teS

(

L
m1n2

e

λi
D12C

∗

1S

(

m2

ρe
+

1

n2β1

)

+ D12

ne

Rα0νn2

(

λe

λi
Ŵ0 + β0 + 2L

m1n2
e

λi
D12C

∗

1S

))]

+ D12

m1n2
e

β1ρen2

[

2
λe

λi
C∗

1ST∞ −
kT

teS

(

λe

λi

Ŵ0

teS
+ β0

− 2L
m1m2n2

e

ρeλi
D12C

∗

1S

)]}

,
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f cmt =
D12

4Rδβ1

{

νe

teS
KT SL

m1n2
e

λiT∞n2

+ KDS

[

D12

ne

Rα0νn2

×

(

β0 + 2
λe

λi
+ 2L

m1n2
e

λi n2β1
D12C

∗

1S + 2
kT

teS
L

m1m2n2
e

λiρeT∞

× D12

(

1−
teS − 1

2teS

))

+ L
m1n2

e

λin2β1
D12C

∗

1S

]

−
m1n2

e

ρen2

[

β0 + 2
λe

λi
+ 2L

m1n2
e

λin2β1
D12C

∗

1S

+ 2
kT

teS
L

m1m2n2
e

λiρeT∞

D12

(

1−
teS − 1

2teS

)]}

,

δ = β0 + 2
λe

λi
+ 2L

m1n2
e

λin2β1
D12C

∗

1S + 2
kT

teS
L

m1m2n2
e

λiρeT∞

×D12

teS + 1

2teS

(

m2

ρe
+

1

n2β1

)

,

β0 = 1 + 4σ0σ1
RT 3

∞

λi
t3eS ,

β1 = 1 + 2D12

ne

Rα0νn2

.

The general expression for the velocity of ordered motion

of the large evaporating drop is so taken to be zero of the

full force (the drop moves uniformly):

Up = Uph + Ucht + Ucmt,

Up = −( f phJ1 + f chtω
(T )
0 + f cmtω

(D)
0 )nz . (10)

The expressions (9), (10) make it possible to evaluate

impact of heat and mass transfer, thermal diffusion and the

evaporation coefficient on the photophoretic force and the

velocity of the highly-viscose drop in the binary gas medium

and they are the most general.

The coefficients f ph, f cht and f cmt which are included

in the force and the velocity of ordered motion of the

evaporating drop, consist of the sub of three summands.

The first summand that is proportional to the thermal

gliding coefficient KT S due to which the evaporating drop

tends to move towards temperature decrease in the external

medium, i.e.from an area of the higher temperature into

the area of the lower temperature; due to the second

summand (diffusion gliding, which is proportional to the

coefficient KDS), the drop can move both towards increase

and decrease of the temperature, depending on the weights

of the components of the binary gas mixture (if the weight

of the molecule of the component of the external mixture

subject to the phase transition on the drop surface, m1 < m2,

then KDS > 0, otherwise — KDS < 0); the third summand

is related to the phase transition and describes impact of

a reactive part of the pulse on the drop. The temperature

dependence of relative concentration of saturated vapor of

the volatile substance of the drop (C∗

1S) and the thermo-

diffusional phenomena within the volume of the gas mixture

cause non-uniform evaporation along the boundary of the

condensed phase and, as a result, the reactive effect.

For the highly thermal conductive large evaporating drops

(λi → ∞) we see that the
”
pure“ photophoresis is almost

absent, i.e. f ph → 0, which is confirmed in the experiments.

As it is seen from the formulae for the coefficients f cht and

f cmt , they do not tend to zero when λi → ∞, i.e. there

is photophoresis, but now it is due to convective heat and

mass transfer. The photophoresis value related to convective

heat transfer depends on the value of the diffusion constant,

diffusion gliding, thermal diffusion and the evaporation

coefficient, whereas the photophoresis value related to the

mass transfer depends on the vale of the diffusion constant,

diffusion gliding, and the evaporation coefficient. In this

case the coefficients f cht and f cmt can be evaluated by the

following formulae: f cht = ne
4Rn2β1

kT
teS

D12

(

KDS
D12

Rα0ν
− m1ne

ρe

)

,

f cmt = ne
4Rn2β1

D12

(

KDS
D12

Rα0ν
− m1ne

ρe

)

. Thus, taking into

account the convective terms in the equations of heat and

mass transfer for the highly thermal conductive evaporating

drops does not result in disappearance of photophoresis as

in case of
”
pure“ photophoresis, but its physical nature is

different. But in case of experimental check, it should be

borne in mind that thermal diffusion is related to the so-

called
”
weak“ effects or the effects of the second order of

smallness (it is quite sensitive to the parameters of potentials

of intermolecular interaction, etc.) [20].

The value and the direction of the force and the velocity

of
”
pure“ photophoresis are also determined by the value

and the direction of the dipole moment of the density of

the thermal sources
∫

V
qi z dV nz , i.e. it can be positive as

well as negative photophoresis. When the dipole moment is

negative (when the larger part of thermal energy is released

in the particle part facing the radiation flow), the drop

can move along the direction of incident radiation, and,

otherwise — against the direction of radiation propagation.

In relation to the coefficients ω
(T)
0 = Ŵ0PrT and

ω
(D)
0 = M0PrD , where PrT =

µec p

λe
— the thermal Prandtl

number, PrD = µe

ρe D12
= νe

D12
— the diffusional Prandtl

number, we note the following. The Prandtl number is

about unity (Pr
∼= 1, for the majority of the gases). It

means that ω
(T)
0 ∼ Ŵ0 and ω

(D)
0 ∼ M0, which in turn are

proportional to relative temperature gradients around the

drop. The problem deals with the photophoresis at small

relative temperature gradients, i.e. there is the inequality

(TS − T∞)/T∞ ≪ 1. Here, TS — the average value of

temperature of the surface of the evaporating drop, T∞ —
the value of temperature of the gas medium far away from

the drop. Taking into account the above said, we have the

following estimate for the coefficients f cht and f cmt ≤ f ph.

Thus, the qualitatively above-considered summands show

that the velocity of ordered motion of the large evaporating

drop can change not only in magnitude, but in a direction,

too, - depending on specific values of the physical quantities

included in the expressions (9), (10).
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It is interesting to study direct impact of the evaporation

coefficient α0 on the velocity of
”
pure“ photophoresis, for

example, as in thermophoresis [21]. In this case, the

coefficient f ph can be presented as follows (kT = 0):

f ∗

ph =
2

3λi T∞�

[

KTS
νe

teS

(

1 +
Rα0νn2

2D12ne

)

+
Rα0νn2T∞

2ne

(

KDS + 2
m1n2

e

ρen2

)]

, (11)

� =

(

β0 + 2
λe

λi

)(

1 +
Rα0νn2

2D12ne

)

+ L
Rα0νm1ne

λi
C∗

1S .

The numerical estimates have been performed as

per the formula (11) for the water drop in a vapor-

air mixture within the temperatures 273K≤ T∞ ≤ 323K

, P∞ = 105 Pa, C0 = 0.01. Fig. 2 (R = 50µm)
and Fig. 3 (R = 30µm) shows plots of the de-

pendences f (1)
ph = f ∗

ph/ f ∗

ph

∣

∣

∣

∣

Tis =273

(α0 = 0.034 [20]) and

f (2)
ph = f ∗

ph/ f ∗

ph

∣

∣

∣

∣

Tis =273

(α0 = 0.07) on the average tempera-

ture of the surface for the various values of the evaporation

coefficient and the drop radius. The numerical values of the

coefficients are taken from [22–24].
The numerical estimates have shown that with weak evap-

oration of the drop (the evaporation coefficient α0 ≤ 0.07)
the dependence of the force and the velocity of the

photophoresis on the evaporation coefficient and the drop

sizes is very weak. With increase of the average temperature

of the drop surface, there is increase of evaporation

intensity (as it is clear from the formula (11)) and,

respectively, the force and the velocity of the photophoresis

will increase, too. In this case, the numerical estimates

require, first of all, knowledge of the numerical value
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1.4

340 350
T , KiS

2.2
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(1)
fph

Figure 2. Dependences of the functions f (1)
ph and f (2)

ph on

the average temperature of the surface of the drop (R = 50 µm,

α0 = 0.034 ( f (1)
ph ), α0 = 0.07 ( f (2)

ph )).
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Figure 3. Dependences of the functions f (1)
ph and f (2)

ph on

the average temperature of the surface of the drop (R = 30 µm,

α0 = 0.034 ( f (1)
ph ), α0 = 0.07 ( f (2)

ph )).

of the evaporation coefficient (the literature has contra-

dicting experimental data) and, secondly, now, taking

into account the dependences of coefficients of molecular

transfer (viscosity, thermal conductivity, diffusion) and the

density of the gas medium on the temperature in the

equations of hydrodynamics and heat and mass trans-

fer [4,6].

Conclusion

The work has theoretically described the photophoretic

motion of the large high-viscose spherical drop (no matter

circulation inside the particle and no forces of interphase

surface tension) in the binary gas mixture. We have

obtained the formulae, which can be used for evaluating the

contributions to the force and the velocity of photophoresis

of the high-viscose drop by the convective terms of heat

and mass transfer, thermal diffusion and direct impact

of the evaporation rate at small relative gradients of the

temperature in its neighborhood The numerical estimates

have shown that with weak evaporation of the drop

the dependence of the force and the velocity of the

photophoresis on the evaporation coefficient and the drop

sizes is very weak. For the highly thermal conductive drops

there is the photophoresis due to convective heat and mass

transfer.
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