Development of an approach to parameterization of the SCC DFTB method for transition metals using copper oxide as an example
Kolesnichenko P.A.1, Glukhova O.E.1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: glukhovaoe@info.sgu.ru

PDF
A physico-mathematical toolkit for parameterizing the self-consisted charge density functional tight binding (SCC DFTB) has been developed by improving the algorithm for creating a new set of Slater-Koster basis functions. The purpose of the toolkit development is to increase the accuracy of theoretical prediction of the physical properties of nanostructures. The effectiveness of the improved parameterization algorithm of SCC DFTB method is demonstrated by the example of copper oxide (CuO). The obtained set of Slater-Koster basic functions demonstrates clear advantages over the well-known matsci-0-3 set: more accurate reproduction of the metric parameters of the crystal lattice (lengths of interatomic bonds and translation vectors) based on comparison with reliable experimental data; correspondence between the calculated and experimentally established band gap; correspondence of the calculated electrical conductivity of the crystal to experimental data. Keywords: copper oxide, Slater-Koster parameters, quantum transport, SCC DFTB.
  1. S. Steinhauer. Chemosensors, 9, 51 (2021). DOI: 10.3390/chemosensors923-271
  2. D. Nunes, A. Pimentel, A. Goncalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins. Semicond. Sci. Technol., 34, 043001 (2019). DOI: 10.1088/1361-6641/ab011e
  3. P.T. Moseley. Meas. Sci. Technol., 28, 082001 (2017). DOI:10.1088/1361-6501/aa7443
  4. H.J. Kim, J.H. Lee, Sens. Actuators B Chem., 192, 607 (2014). DOI: 10.1016/j.snb.2013.11.005
  5. A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, K. Kalantar-zadeh. J. Mater. Chem. C, 2, 5247 (2014). DOI: 10.1039/C4TC00345D
  6. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Prog. Mater. Sci., 60, 208 (2014). DOI: 10.1016/j.pmatsci.2013.09.003
  7. S. Zhaoxiang, R.I. Sosa, S.P.A. Bordas, A. Tkatchenko, J. Lengiewicz. Intern. J. Eng. Sci., 204, 104126 (2024). DOI: 10.1016/j.ijengsci.2024.104126
  8. M. Damej, A. Molhi, H. Lgaz, R. Hsissou, J. Aslam, M. Benmessaoud, N. Rezki, H-S. Lee, D-E. Lee. J. Molecular Structure, 1273 134232 (2023). DOI: 10.1016/j.molstruc.2022.134232
  9. Y. Han, L. Wu, Z. Wang, S. Wang, Z. Qian. Mater. Today Commun., 34, 105233 (2023). DOI: 10.1016/j.mtcomm.2022.105233
  10. T. Minami, Y. Nishi, T. Miyata, J.I. Nomoto. Appl. Phys. Express, 4, (2011). DOI: 10.1143/APEX.4.062301
  11. N. Serin, T. Serin, S. Horzum, Y. Celik. Semicon. Sci. Technol., 20, 398 (2005). DOI:10.1088/0268-1242/20/5/012
  12. P. Sawicka-Chudy, M. Sibinski, G. Wisz, E. Rybak-Wilusz, M. Cholewa. J. Phys.: Conf. Ser., 1033 012002 (2018). DOI:10.1088/1742-6596/1033/1/012002
  13. J.-Y. Parka, C.-S. Kimb, K. Okuyamac, H.-M. Leed, H.-D. Jange, S.E. Leef, T.-O. Kima. J. Power Sources, 306, 764 (2016). DOI: 10.1016/j.jpowsour.2015.12.087
  14. M. Ichimura, Y. Kato. Mater. Sci. Semicond. Process., 16 (6), 1538 (2013). DOI: 10.1016/j.mssp.2013.05.004
  15. N.J. Zainab, A.M. Hussein, M. Mahbubur Rahman, A. Amri, Zh.-T. Jiang. Canadian J. Phys., 102 (5), 316 (2024). ISSN 0008-4204, DOI: 10.1139/cjp-2023-0241
  16. M. Nolan, S. Elliott. Phys. Chem. Chem. Phys.: PCCP, 8, 5350-8 (2006). DOI: 10.1039/b611969g
  17. H. Liu, G. Seifert, C. Di Valentin. J. Chem. Phys., 150 (9), 094703 (2019). DOI: 10.1063/1.5085190
  18. G. Zheng, S. Irle, K. Morokuma. Chem. Phys. Lett., 412 (1-3), 210 (2005). DOI: 10.1016/j.cplett.2005.06.105
  19. S. Manzhos. Chem. Phys. Lett., 643, 16 (2016). DOI: 10.1016/j.cplett.2015.11.007
  20. N. Jardillier, Ph.D. Thesis. Universite Montpellier II, (2006). http://nicolas.jardillier.free.fr. (access date: 10.11.2024)
  21. E. Rauls, R. Gutierrez, J. Elsner, Th. Frauenheim. Sol. State Comm., 111, 459 (1999). DOI: 10.1016/S0038-1098(99)00137-4
  22. M. Gaus, Q. Cui, M. Elstner. J. Chem. Theory Comput., 7, 931 (2011). DOI: 10.1021/ct100684s
  23. M. Kubillus, T. Kubavr, M. Gaus, J. vRezavc, M. Elstner. J. Chem. Theory Comput., 11, 332 (2015). DOI: 10.1021/ct5009137
  24. Electronic resource. Available at: https://dftb.org/ (Date of access: 13.11.2024)
  25. P. Koskinen, V. Makinen. Comput. Mater. Sci., 47, 237 (2009). DOI: 10.48550/arXiv.0910.5861
  26. M. Wahiduzzaman, A.F. Oliveira, P. Philipsen, L. Zhechkov, E. van Lenthe, H.A. Witek, T. Heine. J. Chem. Theory Comp., 9 (9), 4006 (2013). DOI:10.1021/ct4004959
  27. G. Kresse, D. Joubert. Phys. Rev., 59, 1758 (1999). DOI: 10.1103/PhysRevB.59.1758
  28. T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R.A. Scholz. Phys. Status Solidi B, 217, 41 (2000). DOI: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
  29. J.C. Slater, G.F. Koster. Phys. Rev., 94 (6), 1498 (1954). DOI:10.1103/physrev.94.1498
  30. Y. Di, Q. Zongyang, L. Pai, L. Zhenyu. Acta Phys. Chim. Sin., 34 (10), 1116 (2018). DOI: 10.3866/PKU.WHXB201801151
  31. B. Grundkotter-Stock, V. Bezugly, J. Kunstmann, G. Cuniberti, T. Frauenheim, T.A. Niehaus. J. Chem. Theory Comp., 8 (3), 1153 (2012). DOI:10.1021/ct200722n
  32. B. Aradi, T. van der Heide, B. Hourahine, Z. Hu, C. Kohler, T. Niehaus. [Source code] https://github.com/dftbplus/skprogs. (access date: 09.11.2024)
  33. R.S. Mulliken. J. Chem. Phys., 23, 1833 (1955). DOI:10.1063/1.1740588
  34. M. Lewin, E.H. Lieb, R. Seiringer. Pure Appl. Analysis, 2 (1), 35 (2020). DOI:10.2140/paa.2020.2.35
  35. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 11 6671 (1992). DOI: 10.1103/physrevb.46.6671
  36. M. Van den Bossche, H. Gronbeck, B. Hammer. J. Chem. Theory Comp., 14 (5), 2797 (2018). DOI: 10.1021/acs.jctc.8b00039
  37. R.K. Cheedarala, J.I. Song. Intern. J. Heat and Mass Transfer, 162, 120391 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120391
  38. L. Guo, F. Tong, H. Liu, H. Yang, J. Li. Mater. Lett., 71, 32 (2012). DOI: 10.1016/j.matlet.2011.11.105
  39. J. Singh, A.K. Manna, R.K. Soni. Appl. Surf. Sci., 530, 147258 (2020). DOI: 10.1016/j.apsusc.2020. 147258
  40. T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, Yu. Liu. J. Mater. Sci., 47 (11), 4612 (2012). DOI: 10.1007/s10853-012-6326-1
  41. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier. Critical Rev. Solid State Mater. Sci., 39, 1 (2014). DOI: 10.1080/10408436.2013.772503
  42. J.J. Mortensen, A.H. Larsen, M. Kuisma, A.V. Ivanov, A. Taghizadeh, A. Peterson, A. Haldar, A.O. Dohn, C. Schafer, E.O. Jonsson, E.D. Hermes, F.A. Nilsson, G. Kastlunger, G. Levi, H. Jonsson, H. Hakkinen, J. Fojt, J. Kangsabanik, J. S dequist, J. Lehtomaki, J. Heske, J. Enkovaara, K.T. Winther, M. Dulak, M.M. Melander, M. Ovesen, M. Louhivuori, M. Walter, M. Gjerding, O. Lopez-Acevedo, P. Erhart, R. Warmbier, R. Wurdemann, S. Kaappa, S. Latini, T.M. Boland, T. Bligaard, T. Skovhus, T. Susi, T. Maxson, T. Rossi, X. Chen, Y.L.A. Schmerwitz, J. Schi tz, T. Olsen, K.W. Jacobsen, K.S. Thygesen. J. Chem. Phys., 160, 092503 (2024). DOI: 10.1063/5.0182685
  43. S. Datta. Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1995), 396 p
  44. A.A. Ogwu, T.H. Darma, E. Bouquerel. J. Achievements Mater. Manufacturing Eng., 4 (1), 172 (2007).
  45. L. De Los Santos Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima. Thin Solid Films, 520 (20), 6368 (2012). DOI: 10.1016/j.tsf.2012.06.043
  46. O.E. Glukhova, P.A. Kolesnichenko. Tech. Phys., 69 (2), 300 (2024). DOI: 10.21883/0000000000
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru