Development of an approach to parameterization of the SCC DFTB method for transition metals using copper oxide as an example
Kolesnichenko P.A.1, Glukhova O.E.1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: glukhovaoe@info.sgu.ru
A physico-mathematical toolkit for parameterizing the self-consisted charge density functional tight binding (SCC DFTB) has been developed by improving the algorithm for creating a new set of Slater-Koster basis functions. The purpose of the toolkit development is to increase the accuracy of theoretical prediction of the physical properties of nanostructures. The effectiveness of the improved parameterization algorithm of SCC DFTB method is demonstrated by the example of copper oxide (CuO). The obtained set of Slater-Koster basic functions demonstrates clear advantages over the well-known matsci-0-3 set: more accurate reproduction of the metric parameters of the crystal lattice (lengths of interatomic bonds and translation vectors) based on comparison with reliable experimental data; correspondence between the calculated and experimentally established band gap; correspondence of the calculated electrical conductivity of the crystal to experimental data. Keywords: copper oxide, Slater-Koster parameters, quantum transport, SCC DFTB.
- S. Steinhauer. Chemosensors, 9, 51 (2021). DOI: 10.3390/chemosensors923-271
- D. Nunes, A. Pimentel, A. Goncalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins. Semicond. Sci. Technol., 34, 043001 (2019). DOI: 10.1088/1361-6641/ab011e
- P.T. Moseley. Meas. Sci. Technol., 28, 082001 (2017). DOI:10.1088/1361-6501/aa7443
- H.J. Kim, J.H. Lee, Sens. Actuators B Chem., 192, 607 (2014). DOI: 10.1016/j.snb.2013.11.005
- A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, K. Kalantar-zadeh. J. Mater. Chem. C, 2, 5247 (2014). DOI: 10.1039/C4TC00345D
- Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Prog. Mater. Sci., 60, 208 (2014). DOI: 10.1016/j.pmatsci.2013.09.003
- S. Zhaoxiang, R.I. Sosa, S.P.A. Bordas, A. Tkatchenko, J. Lengiewicz. Intern. J. Eng. Sci., 204, 104126 (2024). DOI: 10.1016/j.ijengsci.2024.104126
- M. Damej, A. Molhi, H. Lgaz, R. Hsissou, J. Aslam, M. Benmessaoud, N. Rezki, H-S. Lee, D-E. Lee. J. Molecular Structure, 1273 134232 (2023). DOI: 10.1016/j.molstruc.2022.134232
- Y. Han, L. Wu, Z. Wang, S. Wang, Z. Qian. Mater. Today Commun., 34, 105233 (2023). DOI: 10.1016/j.mtcomm.2022.105233
- T. Minami, Y. Nishi, T. Miyata, J.I. Nomoto. Appl. Phys. Express, 4, (2011). DOI: 10.1143/APEX.4.062301
- N. Serin, T. Serin, S. Horzum, Y. Celik. Semicon. Sci. Technol., 20, 398 (2005). DOI:10.1088/0268-1242/20/5/012
- P. Sawicka-Chudy, M. Sibinski, G. Wisz, E. Rybak-Wilusz, M. Cholewa. J. Phys.: Conf. Ser., 1033 012002 (2018). DOI:10.1088/1742-6596/1033/1/012002
- J.-Y. Parka, C.-S. Kimb, K. Okuyamac, H.-M. Leed, H.-D. Jange, S.E. Leef, T.-O. Kima. J. Power Sources, 306, 764 (2016). DOI: 10.1016/j.jpowsour.2015.12.087
- M. Ichimura, Y. Kato. Mater. Sci. Semicond. Process., 16 (6), 1538 (2013). DOI: 10.1016/j.mssp.2013.05.004
- N.J. Zainab, A.M. Hussein, M. Mahbubur Rahman, A. Amri, Zh.-T. Jiang. Canadian J. Phys., 102 (5), 316 (2024). ISSN 0008-4204, DOI: 10.1139/cjp-2023-0241
- M. Nolan, S. Elliott. Phys. Chem. Chem. Phys.: PCCP, 8, 5350-8 (2006). DOI: 10.1039/b611969g
- H. Liu, G. Seifert, C. Di Valentin. J. Chem. Phys., 150 (9), 094703 (2019). DOI: 10.1063/1.5085190
- G. Zheng, S. Irle, K. Morokuma. Chem. Phys. Lett., 412 (1-3), 210 (2005). DOI: 10.1016/j.cplett.2005.06.105
- S. Manzhos. Chem. Phys. Lett., 643, 16 (2016). DOI: 10.1016/j.cplett.2015.11.007
- N. Jardillier, Ph.D. Thesis. Universite Montpellier II, (2006). http://nicolas.jardillier.free.fr. (access date: 10.11.2024)
- E. Rauls, R. Gutierrez, J. Elsner, Th. Frauenheim. Sol. State Comm., 111, 459 (1999). DOI: 10.1016/S0038-1098(99)00137-4
- M. Gaus, Q. Cui, M. Elstner. J. Chem. Theory Comput., 7, 931 (2011). DOI: 10.1021/ct100684s
- M. Kubillus, T. Kubavr, M. Gaus, J. vRezavc, M. Elstner. J. Chem. Theory Comput., 11, 332 (2015). DOI: 10.1021/ct5009137
- Electronic resource. Available at: https://dftb.org/ (Date of access: 13.11.2024)
- P. Koskinen, V. Makinen. Comput. Mater. Sci., 47, 237 (2009). DOI: 10.48550/arXiv.0910.5861
- M. Wahiduzzaman, A.F. Oliveira, P. Philipsen, L. Zhechkov, E. van Lenthe, H.A. Witek, T. Heine. J. Chem. Theory Comp., 9 (9), 4006 (2013). DOI:10.1021/ct4004959
- G. Kresse, D. Joubert. Phys. Rev., 59, 1758 (1999). DOI: 10.1103/PhysRevB.59.1758
- T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R.A. Scholz. Phys. Status Solidi B, 217, 41 (2000). DOI: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
- J.C. Slater, G.F. Koster. Phys. Rev., 94 (6), 1498 (1954). DOI:10.1103/physrev.94.1498
- Y. Di, Q. Zongyang, L. Pai, L. Zhenyu. Acta Phys. Chim. Sin., 34 (10), 1116 (2018). DOI: 10.3866/PKU.WHXB201801151
- B. Grundkotter-Stock, V. Bezugly, J. Kunstmann, G. Cuniberti, T. Frauenheim, T.A. Niehaus. J. Chem. Theory Comp., 8 (3), 1153 (2012). DOI:10.1021/ct200722n
- B. Aradi, T. van der Heide, B. Hourahine, Z. Hu, C. Kohler, T. Niehaus. [Source code] https://github.com/dftbplus/skprogs. (access date: 09.11.2024)
- R.S. Mulliken. J. Chem. Phys., 23, 1833 (1955). DOI:10.1063/1.1740588
- M. Lewin, E.H. Lieb, R. Seiringer. Pure Appl. Analysis, 2 (1), 35 (2020). DOI:10.2140/paa.2020.2.35
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 11 6671 (1992). DOI: 10.1103/physrevb.46.6671
- M. Van den Bossche, H. Gronbeck, B. Hammer. J. Chem. Theory Comp., 14 (5), 2797 (2018). DOI: 10.1021/acs.jctc.8b00039
- R.K. Cheedarala, J.I. Song. Intern. J. Heat and Mass Transfer, 162, 120391 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120391
- L. Guo, F. Tong, H. Liu, H. Yang, J. Li. Mater. Lett., 71, 32 (2012). DOI: 10.1016/j.matlet.2011.11.105
- J. Singh, A.K. Manna, R.K. Soni. Appl. Surf. Sci., 530, 147258 (2020). DOI: 10.1016/j.apsusc.2020. 147258
- T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, Yu. Liu. J. Mater. Sci., 47 (11), 4612 (2012). DOI: 10.1007/s10853-012-6326-1
- K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier. Critical Rev. Solid State Mater. Sci., 39, 1 (2014). DOI: 10.1080/10408436.2013.772503
- J.J. Mortensen, A.H. Larsen, M. Kuisma, A.V. Ivanov, A. Taghizadeh, A. Peterson, A. Haldar, A.O. Dohn, C. Schafer, E.O. Jonsson, E.D. Hermes, F.A. Nilsson, G. Kastlunger, G. Levi, H. Jonsson, H. Hakkinen, J. Fojt, J. Kangsabanik, J. S dequist, J. Lehtomaki, J. Heske, J. Enkovaara, K.T. Winther, M. Dulak, M.M. Melander, M. Ovesen, M. Louhivuori, M. Walter, M. Gjerding, O. Lopez-Acevedo, P. Erhart, R. Warmbier, R. Wurdemann, S. Kaappa, S. Latini, T.M. Boland, T. Bligaard, T. Skovhus, T. Susi, T. Maxson, T. Rossi, X. Chen, Y.L.A. Schmerwitz, J. Schi tz, T. Olsen, K.W. Jacobsen, K.S. Thygesen. J. Chem. Phys., 160, 092503 (2024). DOI: 10.1063/5.0182685
- S. Datta. Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1995), 396 p
- A.A. Ogwu, T.H. Darma, E. Bouquerel. J. Achievements Mater. Manufacturing Eng., 4 (1), 172 (2007).
- L. De Los Santos Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima. Thin Solid Films, 520 (20), 6368 (2012). DOI: 10.1016/j.tsf.2012.06.043
- O.E. Glukhova, P.A. Kolesnichenko. Tech. Phys., 69 (2), 300 (2024). DOI: 10.21883/0000000000