Manufacturing technology and emission properties of modified metal-porous cathodes of M-type
Krachkovskaya T.M.
1, Glukhova O.E.
1,2,3, Kolosov D. A.
1,21Joint Stock Company Research and Production Enterprise Almaz, Saratov, Russia
2Saratov State University, Saratov, Russia
3I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: elektron.t@bk.ru, glukhovaoe@info.sgu.ru, kolosovda@bk.ru
The improved manufacturing technology and the results of the study of the emissive properties of metal-porous M-type cathodes modified with polyhedral fulleroid-type nanoparticles of toroidal shape - astralenes, in the refractory matrix and sulfoadduct of carbon nanoclusters - ugleron, in the active substance are presented. It is established that the cathode-grid knots and devices with ugleron-modified cathodes are characterized by increased durability due to the decrease in the evaporation rate of the active substance at the operating temperature of the cathode of 1050 oC. The mechanism of increasing the durability of the cathode is revealed by molecular-dynamic modeling using the density functional method. It is found that the layered carbon nanostructures effectively retain the components of the cathode active substance - Ba and BaO, with the adsorption energy of ~ 2-3 eV. Experimental studies have shown that the cathode material containing astralenes has a higher thermionic capacity in the space charge-limited mode compared to similar cathodes whose emitting material does not contain astralenes. Experimental studies of the operation of cathodes whose emitting materials are modified with ugleron and astralenes in various combinations have shown that their service life is 2-6 times longer than that of commercially used M-type cathodes. Keywords: metal-porous cathode, emission properties, nanocarbon, astralen, ugleron, density functional theory, molecular dynamics modeling.
- M.A. Apin, A.B. Danilov, N.A. Kalistratov, D.I. Kirichenko, S.I. Kuzyutkin, S.A. Nefedov, A.D. Rafalovich, V.A. Senchurov, P.D. Shalaev. Radiotekhnika, 83, (8 (12)), 6 (2019)
- S. Kohler, J. Gastaud, J. Puech, R. Dionisio. Wideband Highly Efficient Ka-band 250 W Space Traveling-Wave Tube THL20250C \& THL20250R. (22th IVEC. Proc. Virtual event. April 27-30, 2021. IEEE. P. 28. (in Russian)
- European developments of satellite TWT (Novosti SVCh tekhniki, 6, 16 (2024))
- S.A. Nefedov, I.V. Polyakov, N.V. Rzhevin. The current state and prospects for the development and application of high-power X-band pulsed TWT with low-voltage electronic flow control (Scientific and Technical Conference "High-power vacuum microwave devices". Theses. M., 22-23 May 2024, AO "SPA "Toriy", p. 16-17)
- Achievements of Chinese specialists in the development of standard porous thermal cathodes (Novosti SVCh tekhniki, 4, 28 (2024))
- Dispenser cathodes with a projected service life of more than 20 years (Novosti SVCh tekhniki, 6, 22 (2015))
- M.C. Green, H.B. Skiner, B.A. Tuck. Appl. Surf. Sci., 8 (2), 13 (1981)
- M. Novak, D. Bussey, E. Daniszewski. Cathode Life Test Facility, AD-A234 309, (RL-TR-91-10 In House Report 1991)
- Chen Lai, Jinshu Wang, Fan Zhou, Wei Liu, Daniel den Engelsen, Naihua Miao. App. Surf. Sci., 1 (2017). DOI: 10.1016/j.apsusc.2017.08.038
- G. Gaertner, W. Knapp, R.G. Forbes. Modern Developments in Vacuum Electron Sources. Topics in Applied Physics (Springer, Nature Switzerland, AG 2020135), p. 609. DOI: 10.1007/978-3-030-47291-7
- A.N. Ponomarev, A.S. Rassokhin Magazine Civil Eng., 8 (68), 45 (2016). DOI: 10.5862/MCE.68.5
- A.N. Ponomarev, A.V. Ivanov, M.V. Suyasova, A.Ye. Savenkova, D.V. Pyatin, O.V. Voytenok. Fire Technol., (2021). DOI: 10.1007/s10694-021-01094-1
- J. Zhang, J. Xu, D. Ji, H. Xu, M. Sun, L. Wu, X. Li, Q. Wang, X. Zhang. Vacuum, 186 (110029), 1 (2021). DOI:10.1016/j.vacuum.2020.110029
- F. Jin, A. Miruko, D. Litt, K. Zhou. J. Vac. Sci. Technol. A, 40 (013415), 1 (2022). DOI: 10.1116/6.0001467
- V.T. Tormozov, P.V. Mezinov, M.G. Rybin, E.V. Zhary, V.A. Rezaev, E.D. Obraztsova, E.A. Obraztsova. Elektron. Tekh. Ser. 1, SVCh-Tekh., 4 (543), 43 (2019) (in Russian)
- X. Gong, H. Fan, C. Dong, X. Sun, Z. Bao, T. Liang, W. Hu. Emission Performance of Graphene-Coated Ba-W Cathode (22th IVEC. Proc. Virtual event. April 27-30, 2021. IEEE. p. 60-61)
- V.I. Shesterkin, T.M. Krachkovskaya, P.D. Shalaev, L.T. Baimagambetova, S.D. Zhuravlev, D.I. Kirichenko, R.Yu. Bogachev. J. Commun. Technol. Electron., 67 (10), 1198 (2022), DOI: 10.1134/s1064226922100102
- T.M. Krachkovskaya, P.D. Shalaev, V.I. Shesterkin, R.Yu. Bogachev, D.A. Tikhomirov, Yu.A. Odintsova, G.R. Biktimirova. Influence of operating modes and operating time on the emission characteristics of M-type cathodes modified with nanocarbon (XXII Coordination Scientific Technical workshop on microwave technology. Materials. Nizhny Novgorod. 11-15 September 2023. JSC "RPE "Salut". p. 5-7)
- A.I. Shames, E.A. Katz, A.M. Panich, D. Mogilyansky, E. Mogilko, J. Grinblat, V.P. Belousov, I.M. Belousova, A.N. Ponomarev. Diamond \& Related Materials, 18, 505 (2009). DOI: 10.1016/j.diamond.2008.10.056
- A.N. Ponomarev, M.E. Yudovich, A.A. Kozeev. Sulfoadduct of carbon nanoclusters and method of its production (Patent N2478117, Appl. 08.02.2010; published 27.03.2013)
- T.M. Krachkovskaya, G.V. Sahaji, A.V. Storublev, A.N. Ponomarev. Metal-porous cathode and method of its fabrication(Patent N2658646, Appl. 27.06.2017; published on 22.06.2018)
- T.M. Krachkovskaya, A.S. Yemelyanov, S.D. Zhuravlev. Method of fabrication of metal-porous cathode (Patent N 2823125, Appl. 09.10.2023; published 18.07.24
- T.M. Krachkovskaya. Method for modifying the emissive material of metal-porous cathode(Patent N 2830229, Appl. 28.03.2024, Publ. 18.11.24)
- J. Li, Z. Yu, W. Shao, K. Zhang, Y. Gao, H. Yuan, H. Wang, K. Huang, Q. Chen, S. Yan, S. Cai. Appl. Surf. Sci., 251, 151 (2005). DOI: 10.1016/j.apsusc.2005.03.218
- J. Wang. Effect of Ir on the emission property of Ba dispenser cathode (24th IVEC. Proc. Chengdu. April 26-28, 2023. IEEE. P. 541-542)
- T.M. Krachkovskaya, L.A. Melnikov, O.E. Glukhova, V.V. Shunaev, P.D. Shalaev. Tech. Phys. Lett., 46 (7), 673 (2020). DOI: 10.1134/S106378502007010X
- P. Ordejon, E. Artacho, J.M. Soler. Phys. Rev. B, 53, R10441 (1996). DOI: 10.1103/PhysRevB.53.R10441
- J.M. Soler, E. Artacho, J.D. Gale, A. Garci a, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys. Condens. Matter, 14, 2745 (2002). DOI: 10.1088/0953-8984/14/11/302
- S. Grimme. J. Comput. Chem., 27 (1787), 2006 DOI: 10.1002/jcc.20495
- D.D. Johnson. Phys. Rev. B, 38 12807 (1988). DOI: 10.1103/PhysRevB.38.12807