Approbation of the technology of laser soft tissue reconstruction using laser speckle contrast imaging in vivo
Ryabkin D.I. 1,2, Stavtsev D. D. 1,2, Suchkova V.V. 1,2, Morozova E.A. 3, Pyavchenko G.A. 4, Konovalov A. N.2,5, Selischev S. V.1, Gerasimenko A. Yu. 1,2
1 Institute of Biomedical Systems, National Research University “Moscow Institute of Electronic Technology”, Moscow, Zelenograd, Russia
2Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
3Patrice Lumumba Peoples' Friendship University of Russia, Moscow, Russia
4Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
5Neurosurgical Department, Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russia

PDF
The aim of the work is the approbation of the developed technology of laser reconstruction of soft tissues on laboratory rabbits in vivo. The technology of tissues laser repair includes application of laser biopolymer solder based on bovine serum albumin, single-walled carbon nanotubes and chromophore - indocyanine green to the area of dissection and subsequent irradiation with laser radiation with a wavelength of 810 nm. The laser system is equipped with temperature feedback, allowing continuous monitoring and temperature control in the area of laser suture formation. During the operation and before the day of withdrawal by the method of laser speckle-contrast imaging the study of microcirculation recovery of blood flow in the area of laser connection of biological tissues was carried out. After the experiments on each day of withdrawal, histological and immunohistochemical studies of laser sutures were performed to assess the effectiveness of tissue healing and the degree of scarring, as well as toxicological studies of lymph nodes adjacent to the laser repair area. As a result of the studies, it was found that the developed technology does not disrupt blood flow and allows to create sutures without rough scar formation. Keywords: laser surgery, speckle contrast imaging, biopolymers, single-walled carbon nanotubes.
  1. H.V. Vinters, K.A. Galil, M.J. Lundie. Neuroradiology, 27, 279 (1985) (in Russian). DOI: 10.1007/BF00339559
  2. P. Ferreira, H. Gil, P. Alves. An overview in surgical adhesives. In Recent Advances in Adhesions Research (Nova Science Publishers, Inc., Hauppauge, NY., 2013), p. 59-85
  3. R. Urie, T. Flake, K. Rege. Laser Tissue Welding. In Wound Healing and Surgical Repair Bioengineering In Wound Healing: A Systems Approach, 303-324 (2017). DOI: 10.1142/9789813144583_0011
  4. K.M. McNally, S.B. Sorg, A.J. Welch, J.M. Dawes, E.R. Owen. Phys. Med. Biol., 44 (4), 983 (1999). DOI: 10.1088/0031-9155/44/4/013
  5. L.W. Murray, L. Su, G.E. Kopchok, R.A. White. Lasers in Surgery and Medicine, 9 (5), 490 (1989). DOI: 10.1002/lsm.1900090512
  6. B.B. Scott, M.A. Randolph, F.P.S. Guastaldi, R.C. Wu, R.W. Redmond. Surg. Innov., 30 (2), 143 (2023). DOI: 10.1177/15533506221104382
  7. C. Li, K. Wang, Opt. Laser Technol., 138, 106862 (2021). DOI: 10.1016/j.optlastec.2020.106862
  8. J. Dong, H. Breitenborn, R. Piccoli, L.V. Besteiro, P. You, D. Caraffini, Z.M. Wang, A.O. Govorov. Biomed. Opt. Express, 11 (4), 2254 (2020). DOI: 10.1364/BOE.389561
  9. Y.A. Mistry, S.S. Natarajan, S.A. Ahuja. Ann. Maxillofac. Surg., 8 (1), 35 (2018). DOI: 10.4103/ams.ams_147_17
  10. J.W. Oliver, R.L. Vincelette, G.D. Noojin, C.D. Clark III, C.A. Harbert, K.J. Schuster, A.D. Shingledecker, S.S. Kumru, J. Maughan, N. Kitzis, G.D. Buffington, D.J. Stolarski, R.J. Thomas. J. Biomed. Opt., 18 (12), 125002 (2013). DOI: 10.1117/1.JBO.18.12.125002
  11. J.N. Bixler, B.H. Hokr, M.L. Denton, G.D. Noojin, A.D. Shingledecker, H.T. Beier, R.J. Thomas, B.A. Rockwell, V.V. Yakovlev. J. Biomed. Opt., 19 (7), 070501 (2014). DOI: 10.1117/1.JBO.19.7.070501
  12. P. Vescovi, E. Merigo, C. Fornaini, J.-P. Rocca, S. Nammour. Medicina Oral, Patol. Oral Cir. Bucal, 17 (4), e697 (2012). DOI: 10.1109/IWBP.2011.5954804
  13. B. Hiebl, L. Ascher, K. Luetzow, K. Kratz, C. Gruber, C. Mrowietz, Clin. Hemorheol. Microcirc., 69 (1-2), 317 (2018). DOI: 10.3233/CH-189108
  14. M.B. Reinhart, C.R. Huntington, L.J. Blair, B.T. Heniford, V.A. Augenstein, Surg. Innov., 23 (2), 166 (2015). DOI: 10.1177/1553350615604053
  15. A.Yu. Gerasimenko, E.A. Morozova, D.I. Ryabkin, A. Fayzullin, S.V. Tarasenko, V.V. Molodykh, E.S. Pyankov, M.S. Savelyev, E.A. Sorokina, A.Y. Rogalsky, A. Shekhter, D.V. Telyshev. Bioengineering, 9 (6), 238 (2022) (in Russian). DOI: 10.3390/bioengineering9060238
  16. A.Yu. Gerasimenko, D.I. Ryabkin. Kondensirovannye sredy i mezhfaznye granitsy, 21 (2), 191 (2019) (in Russian)
  17. A. Gerasimenko, N. Zhurbina, U. Kurilova, A. Polokhin, D. Ryabkin, M. Savelyev, V. Podgaetsky. SPIE, 10675, 111 (2018). DOI: 10.1117/12.2306792
  18. G. Piavchenko, I. Kozlov, V. Dremin, D. Stavtsev, E. Seryogina, K. Kandurova. J. Biophotonics, 14 (12), e202100216 (2021). DOI: 10.1002/jbio.202100216
  19. A.-A. Grosset, K. Loayza-Vega, E. Adam-Granger, M. Birlea, B. Gilks, B. Nguyen, G. Soucy, D. Tran-Thanh, R. Albadine, D. Trudel, Appl. Immunohistochem. Molecular Morphology, 27 (7), 558 (2019). DOI: 10.1097/PAI.0000000000000727
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru