Optical limiting properties of composites of iron, nickel and cobalt phthalocyanine complexes with single-wall carbon nanotubes and assessment of their efficiency by latest correlation methods
Savelyev M. S.
1,2, Vasilevsky P. N.
1,3, Dudin A. A.
3, Tolbin A. Yu.
4, Pavlov A.A.
3, Gerasimenko A. Yu.
1,21Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russia
2Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
3 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
4 Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: savelyev@bms.zone, pavelvasilevs@yandex.ru, dudin.a@inme-ras.ru, tolbin@inbox.ru, pavlov.a@inme-ras.ru, gerasimenko@bms.zone
One of the strategic directions of scientific and technological development of the Russian Federation is the creation of highly effective protection against laser radiation attack. A small series of phthalocyanine complexes with 3d-row metals (iron (1a), cobalt (1b), and nickel (1c)) has been synthesized. It is shown that the enhancement of the nonlinear optical response (NOR) of these dyes is possible by simply adsorbing them on the surface of single-walled carbon nanotubes (SWCNTs). The efficiency of the nonlinear absorbers has been evaluated using open aperture Z-scan and fixed sample position methods. It is found that the nature of the metal complexing agent allows fine-tuning of NOR properties of the materials. Thus, the highest value of the nonlinear absorption coefficient (β = 650 cm/GW) was obtained for 1c (PcNi). The estimation of the optical confinement efficiency for the obtained complexes was performed using correlation relations derived in our previous works by the state-of-the-art high performance CORRELATO method. Special "efficiency" descriptors were used, which allowed us to classify our materials into three groups within the graphical analysis. As a result, composites SWCNTs/PcFe (2a) and SWCNTs/ PcCo (2b) are found to have the best combined limiting characteristics and can meet the design requirements. Keywords: optical limiting, composites, phthalocyanines, single-walled carbon nanotubes, Z-scan, CORRELATO.
- J.-A. Beraldin. Opt. Eng., 39, 196 (2000). DOI: 10.1117/1.602352
- C. Jiang, Y. Chen, W. Tian, Z. Feng, W. Li, C. Zhou, H. Shao, E. Puttonen, J. Hyyppa. Satell. Navig., 1, 29 (2020). DOI: 10.1186/s43020-020-00029-5
- R. Roriz, J. Cabral, T. Gomes. IEEE Trans. Intell. Transp. Syst., 23, 6282 (2022). DOI: 10.1109/TITS.2021.3086804
- Y. Guan, H. Li, L. Xue, R. Yin, L. Zhang, H. Wang, G. Zhu, L. Kang, J. Chen, P. Wu. Opt. Lasers Eng., 156, 107102 (2022). DOI: 10.1016/j.optlaseng.2022.107102
- C. Hong, S.-H. Kim, J.-H. Kim, S.M. Park. IEEE Sens. J., 18, 7032 (2018). DOI: 10.1109/JSEN.2018.2852794
- C. Westgate. How to Determine the Laser-Induced Damage Threshold of 2D Imaging Arrays (SPIE, 2019), v. SL47, p. 25. DOI: 10.1117/3.2523509
- T. Alig, N. Bartels, P. Allenspacher, I. Balasa, T. Bontgen, D. Ristau, L. Jensen. Opt. Express., 29, 14189 (2021). DOI: 10.1364/OE.418368
- N. Bartels, P. Allenspacher, T. Alig, I. Balasa, H. Schroder, G. Taube, W. Riede. Proceedings of International Conference on Space Optics --- ICSO 2020 (SPIE, 2020), v. 11852, p. 215. DOI: 10.1117/12.2600036
- Y. Shi, J. Zhang, W. Xue, Z. Xu, Y. Li, P. Dou, G. Feng. Proceedings of Sixth International Symposium on Laser Interaction with Matter (SPIE, 2022), v. 12459, p. 49. DOI: 10.1117/12.2656210
- P.N. Vasilevsky, M.S. Savelyev, A.Y. Tolbin, A.V. Kuksin, Y.O. Vasilevskaya, A.P. Orlov, Y.P. Shaman, A.A. Dudin, A.A. Pavlov, A.Y. Gerasimenko. Photonics, 10, 537 (2023). DOI: 10.3390/photonics10050537
- A.Y. Tolbin, M.S. Savelyev, P.N. Vasilevsky, A.Y. Gerasimenko. Phys. Chem. Chem. Phys., 26, 8965 (2024). DOI: 10.1039/D4CP00055B
- S. Mgidlana, P. Sen, T. Nyokong. J. Mol. Struct., 1220, 128729 (2020). DOI: 10.1016/j.molstruc
- H. Zhang, L. Li, J. Chen, J. Wang, Y. Liu, H. Zhang, Q. Wang, S. Wang, G. Yang. Dye. Pigment., 219, 111553 (2023). DOI: 10.1016/j.dyepig.2023.111553
- M. Erdem, E. Korkmaz, G. Kosoglu, E. Ahmetali, N. Farajzadeh, G. Eryurek, M.B. Kocak. Polyhedron., 195, 114975 (2021). DOI: 10.1016/j.poly.2020.114975
- H. Manaa, D. Attila, A.G. Gurek, S. Mohamed, F.A. Alawainati, A. Jaafar, F.Z. Henari. Opt. Spect., 129, 628 (2021). DOI: 10.1134/S0030400X21050064
- D. Zhang, Y. Wang, X. Meng, H. Ni, Y. Wang, D. Liu, G. Wang, Y. Chen. J. Phys. Chem. A., 128, 6402 (2024). DOI: 10.1021/acs.jpca.4c02962
- J. Wang, W. Dong, Z. Si, X. Cui, Q. Duan. Dye. Pigment., 198, 109985 (2022). DOI: 10.1016/j.dyepig.2021.109985
- A.U. Habeeba, M. Saravanan, T.C.S. Girisun. J. Mol. Struct., 1240, 130559 (2021). DOI: 10.1016/j.molstruc
- W. Li, Z. Zhang, Y. Li, Y. Huang, J. Zhang, M. You, P. Peng, C. Zheng. J. Lumin., 275, 120754 (2024). DOI: 10.1016/j.jlumin.2024.120754
- K. Balasubramanian, M. Burghard. Small., 1, 180 (2005). DOI: 10.1002/smll.200400118
- J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon. J. Phys. Chem. B, 105, 2525 (2001). DOI: 10.1021/jp002596i
- D.A. Britz, A.N. Khlobystov. Chem. Soc. Rev., 35, 637 (2006). DOI: 10.1039/b507451g
- G. Bottari, G. De La Torre, T.T. Torres. Acc. Chem. Res., 48, 900 (2015). DOI: 10.1021/ar5004384
- F. Mashkoor, A. Nasar, Inamuddin., Environ. Chem. Lett., 18, 605 (2020) (in Russian). DOI: 10.1007/s10311-020-00970-6
- B.I. Kharisov, O.V. Kharissova, A.V. Dimas. RSC Adv., 6, 68760 (2016). DOI: 10.1039/C6RA13187E
- E.K. Silva, A.L.R. Costa, A. Gomes, M.A. Bargas, R.L. Cunha, M.A.A. Meireles. Ultrason. Sonochem., 47, 114 (2018). DOI: 10.1016/j.ultsonch.2018.04.020
- A.Yu. Tolbin. Establishing Correlations between Unlimited Datasets (Correlato, Certificate of State Registration of Computer Program No 2022613888 (Ru), 2022)
- A.Y. Tolbin, M.S. Savelyev, A.Y. Gerasimenko, V.E. Pushkarev. ACS Omega, 7, 28658 (2022). DOI: 10.1021/acsomega.2c03928