Polarization effects electromagnetically induced transparency in the -scheme of degenerated levels
The conclusions of a theoretical study of the phenomenon of electromagnetic induced transparency with elliptical polarization of probe and control pulses are reported. The resonant medium is modeled by the -scheme of degenerate transitions between the 3P0, 3P1 and 3P2 levels of the 208Pb isotope. It is assumed that at the entrance to the medium the probe pulse has a significantly lower intensity and duration than the control field pulse. It is shown that in the medium the probe pulse splits into two elliptically polarized pulses propagating independently of each other. The major axis of the polarization ellipse of one of them is parallel, and the second is perpendicular to the major axis of the polarization ellipse of the control radiation. The speed of movement of a pulse of the second type is significantly less than the speed of propagation of pulses of the first type. Both of these speeds, due to the phenomenon of electromagnetically induced transparency, are significantly less than the speed of light in a vacuum, As the probe field propagates in the medium, its components shifts toward the trailing edge of the control pulse. Reducing the intensity of the control field in the area where the components of the probe radiation are located reduces the effectiveness of the phenomenon of electromagnetic induced transparency. This leads to an increase in the energy loss of the probe radiation and its attenuation. Due to the fact that pulses of the second type have a lower propagation speed, they fall into the region of the trailing edge of the control pulse earlier than pulses of the first type. Therefore, a pulse of the second type penetrates into the medium at a shorter distance than a pulse of the first type. Keywords: electromagnetically induced transparency, normal modes.
- S.E. Harris. Phys. Today, 50 (6), 36 (1997)
- M.D. Lukin. Rev. Mod. Phys., 75 (2), 457 (2003)
- M. Fleischhauer, A. Imamov glu, J.P. Marangos. Rev. Mod. Phys., 77 (2), 633 (2005)
- L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller. Nature (London), 414, 413 (2001)
- A. Sinatra. Phys. Rev. Lett., 97 (25), 253601 (2006)
- M. Martinalli, P. Valente, H. Failache, D. Felinto, L.S. Cruz, P. Nussenzveig, A. Lezama. Phys. Rev., A, 69 (4), 043809 (2004)
- A. Godone, S. Micallilizio, F. Levi. Phys. Rev. A, 66 (6), 063807 (2002)
- M.D. Lukin, A. Imamov glu. Nature (London), 413, 273 (2001)
- S.E. Harris. Phys. Lett., 62 (9), 1033 (1989)
- H.H. Jen, Daw-Wei Wang. Phys. Rev. A, 87 (6), 061802(R) (2013)
- C. Basler, J. Grzesiak, H. Helm. Phys. Rev. A, 92 (1), 013809 (2015)
- R. Liu, T. Liu, Yi. Wang, Yu. Li, B. Gai. Phys. Rev. A, 96 (5), 053823 (2017)
- F. Le Kien, A. Rauschenbeutel. Phys. Rev. A, 91 (5), 053847 (2015)
- H.-H. Wang, J. Wang, Z.-H. Kang, L. Wang, J.-Yu. Gao, Yi. Chen, Xi.-J. Zhang. Phys. Rev. A, 100 (2), 013822 (2019)
- H. Li, Zh. Xu, H. Wang, J. Chen. Opt. Quant. Electron., 55, Article N 198 (2023). DOI: 10.1007/s11082-022-04472-3
- H. Zheng, Yu. Zheng, M. Ouyang, H. Fan, Q. Dai, H. Liu, L. Wu. Opt. Express, 32 (5/26), 7318 (2024). DOI: 10.1364/OE.517111
- S. Wielandy, A.L. Gaeta. Phys Rev. Lett., 81, 3359 (1998)
- Bo Wang, Sh. Li, J. Ma, H. Wang, K.C. Peng, M. Xiao. Phys. Rev. A, 73, 051801(R) (2006)
- G.S. Agarwal, S. Dosgupta. Phys. Rev. A, 67, 023814 (2003)
- V.A. Sautenkov, Y.V. Rostovtsev, H. Chen, P. Hsu, G.S. Agarwal, M.O. Scully. Phys. Rev. Lett., 94, 233601 (2005)
- T.H. Yoon, Ch.Y. Park, S.J. Park. Phys. Rev. A, 70, 061803(R) (2004)
- Z. Kis, G. Demeter, J.J. Janszky. Opt. Soc. Am. B, 30, 829 (2013)
- O.M. Parshkov. Quant. Electron., 48 (11), 1027 (2018). DOI: 10.1070/QEL16683
- O.M. Parshkov. Quant. Electron., 49 (11), 1019 (2019)
- M. Jain, A. Kasapi, G.Y. Yin. Phys. Rev. Lett., 75, 4385 (1995)
- A. Kasapi, M. Jain, G.Y. Yin, S.E. Harris. Phys. Rev. Lett., 74, 2447 (1995)
- B.E.A. Saleh, M.C. Teich. Fundamentals of photonics, 2th ed. (Wiley-Interscience, 2007)
- R.L. deZafra, A. Marshall. Phys. Rev., 170 (1), 28 (1968)
- I.S. Grigoryev, E.Z. Mejlikhov (red.). Fizicheskie velichiny, Spravochnik. (Energoatomizdat, M., 1991) (in Russian)
- V.M. Fain. Kvantovaya radiofizika. Fotoni i nelineiniye sredi (Sovetskoye radio, M., 1972), v. 1. (in Russian)
- M.O. Scully, M.S. Zubairy. Quantum Optics (University Press, Cambridge 1997)