Influence of metric parameters on the electrical conductivity properties of thin films of perforated graphene functionalized with carboxyl groups
Barkov P. V. 1, Slepchenkov M. M. 1, Glukhova O. E. 1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: barkovssu@mail.ru, slepchenkovm@mail.ru, glukhovaoe@info.sgu.ru

PDF
Using the density functional theory based tight binding method, we have in silico studied of the electrical conductivity properties of thin films of perforated graphene with almost circular holes with a diameter of 1.2 nm and a neck width of 0.7-2 nm. Patterns in the change of the electrical conductivity of the investigated films with increasing neck width in different directions of the hexagonal graphene lattice were identified. It was found that when the neck width was altered in "zigzag" direction, the electrical conductivity changed abruptly in steps of three, while in "armchair" direction it increased nearly linearly. To explain the observed patterns, the characteristics of quantum electron transport in the studied films at various neck widths were analyzed. Keywords: electrical conductivity, density functional theory based tight binding method, neck width, electron transmission function.
  1. D. Wang, Y. Dou, X. Zhang, K. Bi, I.R. Panneerselvam, H. Sun, X. Jiang, R. Dai, K. Song, H. Zhuang, Y. Lu, Y. Wang, Y. Liao, L. Ding, Q. Nian. Nano Today, 55, 102162 (2024). DOI: 10.1016/j.nantod.2024.102162
  2. M. Nazarian-Samani, S. Haghighat-Shishavan, M. Nazarian-Samani, S.F. Kashani-Bozorg, S. Ramakrishna, K.B. Kim. Progr. Mater. Sci., 116, 100716 (2021). DOI: 10.1016/j.pmatsci.2020.100716
  3. J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan. Nat Nanotechnol., 5, 190 (2010). DOI: 10.1038/nnano.2010.8
  4. J. Yanga, M. Maa, L. Lia, Y. Zhanga, W. Huanga, X. Dong. Nanoscale, 6, 13301 (2014). DOI: 10.1039/C4NR04584J
  5. N.S. Rajput, S.A. Zadjali, M. Gutierrez, A.M.K. Esawi, M.A. Teneiji. RSC Adv., 11, 27381 (2021). DOI: 10.1039/d1ra05157a
  6. R. Ma, Y. Zhou, H. Bi, M. Yang, J. Wang, Q. Liu, F. Huang. Progr. Mater. Sci., 113, 100665 (2020). DOI: 10.1016/j.pmatsci.2020.100665
  7. Y. Lin, Y. Liao, Z. Chen, J.W. Connell, Mater. Res. Lett., 5 (4), 209 (2017). DOI: 10.1080/21663831.2016.1271047
  8. T. Liu, L. Zhang, B. Cheng, X. Hu, J. Yu. Cell Reports Phys. Sci., 1, 100215 (2020). DOI: 10.1016/j.xcrp.2020.100215
  9. K. Yanga, J. Lia, L. Zhou, T. Zhang, L. Fu. Flat Chem., 15, 100109 (2019). DOI: 10.1016/j.flatc.2019.100109
  10. M. Kim, N.S. Safron, E. Han, M.S. Arnold, P. Gopalan. Nano Lett., 10, 1125 (2010). DOI: 10.1021/nl9032318
  11. X. Liang, Y.S. Jung, S. Wu, A. Ismach, D.L. Olynick, S. Cabrini, J. Bokor. Nano Lett., 10, 2454 (2010). DOI: 10.1021/nl100750v
  12. C.-H. Yang, P.-L. Huang, X.-F. Luo, C.-H. Wang, C. Li, Y.-H. Wu, J.-K. Chang. Chem. Sus. Chem., 8, 1779 (2015). DOI: 10.1002/cssc.201500030
  13. K.A. Sammed, L. Pan, M. Asif, M. Usman, T. Cong, F. Amjad, M.A. Imran. Sci. Rep., 10, 2315 (2020). DOI: 10.1038/s41598-020-58162-9
  14. F. Su, S. Zheng, F. Liu, X. Zhang, F. Su, Z.-S. Wu. Chin. Chem. Lett., 32, 914 (2021). DOI: 10.1016/j.cclet.2020.07.025
  15. J.H. Jeong, G.-W. Lee, Y.H. Kim, Y.J. Choi, K.C. Roh, K.-B. Kim. Chem. Eng. J., 378, 122126 (2019). DOI: 10.1016/j.cej.2019.122126
  16. D. Yang, B. Xu, Q. Zhao, X.S. Zhao. J. Mater. Chem. A, 7, 363 (2019). DOI: 10.1039/C8TA09188A
  17. W. Oswald, Z. Wu. Phys. Rev. B, 85, 115431 (2012). DOI: 10.1103/PhysRevB.85.115431
  18. G. Tang, Z. Zhang, X. Deng, Z. Fan, Y. Zeng, J. Zhou. Carbon, 76, 348 (2014). DOI: 10.1016/j.carbon.2014.04.086
  19. M.S. Eldeeb, M.M. Fadlallah, G.J. Martyna, A.A. Maarouf. Carbon, 133, 369 (2018). DOI: 10.1016/j.carbon.2018.03.048
  20. L. Huang, S. Miao, X. Wang, X. Yang. Molecular Simulation, 46, 853 (2020). DOI: 10.1080/08927022.2020.1778171
  21. M.K. Rabchinskii, S.D. Saveliev, D.Yu. Stolyarova, M. Brzhezinskaya, D.A. Kirilenko, M.V. Baidakova, S.A. Ryzhkov, V.V. Shnitov, V.V. Sysoev, P.N. Brunkov. Carbon, 182, 593 (2021). DOI: 10.1016/j.carbon.2021.06.057
  22. V.V. Shnitov, M.K. Rabchinskii, M. Brzhezinskaya, D.Yu. Stolyarova, S.V. Pavlov, M.V. Baidakova, A.V. Shvidchenko, V.A. Kislenko, S.A. Kislenko, P.N. Brunkov. Small, 17, 2104316 (2021). DOI: 10.1002/smll.202104316
  23. P.V. Barkov, M.M. Slepchenkov, O.E. Glukhova. Technical Physics, 69 (4), 404 (2024)
  24. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B, 58, 7260 (1998). DOI: 10.1103/PhysRevB.58.7260
  25. B. Aradi, B. Hourahine, Th. Frauenheim. J. Phys. Chem. A, 111, 5678 (2007). DOI: 10.1021/jp070186p
  26. B. Hourahine, B. Aradi, V. Blum, F. Bonafe, A. Buccheri, C. Camacho, C. Cevallos, M.Y. Deshaye, T. Dumitrica, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J.J. Kranz, C. Kohler, T. Kowalczyk, T. Kubav r, I.S. Lee, V. Lutsker, R.J. Maurer, S.K. Min, I. Mitchell, C. Negre, T.A. Niehaus, A.M.N. Niklasson, A.J. Page, A. Pecchia, G. Penazzi, M.P. Persson, J. v Rezav c, C.G. Sanchez, M. Sternberg, M. Stohr, F. Stuckenberg, A. Tkatchenko, V. W.-Z. Yu, T. Frauenheim. J. Chem. Phys., 152, 20 (2020). DOI: 10.1063/1.5143190
  27. M. Elstner, G. Seifert. Philos. Trans. R. Soc. A, 372, 20120483 (2014). DOI: 10.1098/rsta.2012.0483
  28. H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
  29. S. Datta. Quantum Transport: Atom to Transistor (Cambridge University Press, London, UK, 2005), p. 404
  30. M.K. Rabchinskii, V.V. Shnitov, A.T. Dideikin, A.E. Aleksenskii, S.P. Vul, M.V. Baidakova, I.I. Pronin, D.A. Kirilenko, P.N. Brunkov, J. Weise, S.L. Molodtsov. J. Phys. Chem. C, 12, 28261 (2016). DOI: 10.1021/acs.jpcc.6b08758
  31. B. Sakkaki, H.R. Saghai, G. Darvish, M. Khatir. Opt. Mater., 122, 111707 (2021). DOI: 10.1016/j.optmat.2021.111707
  32. O.E. Glukhova, P.V. Barkov. Lett. Mater., 12, 392 (2021). DOI: 10.22226/2410-3535-2021-4-392-396
  33. P.V. Barkov, O.E. Glukhova. Nanomaterials, 11, 1074 (2021). DOI: 10.3390/nano11051074
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru