Petrunin A.A.
1, Glukhova O.E.
1,21Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: sacha.petrynin@gmail.com, glukhovaoe@info.sgu.ru
Within the framework of ab initio method, a study of the dissociative adsorption process of alcohols (methanol, ethanol, isopropanol, butanol) and ketones (2-octanone, acetone, cyclohexanone, cyclopentanone) on the surface of a thin SnO2 film was conducted. It was established that the number of hydrogen atoms detached during dissociative adsorption does not significantly affect the binding energy. It was found that dissociative adsorption leads to the emergence of additional peaks in the density of states function in the valence band, which causes hybridization of electron clouds and an increase in resistance. It was demonstrated that the chemiresistive response during dissociative adsorption is, on average, higher for alcohols than for ketones. Keywords: tin oxide, thin films, DFT method, chemiresistive response, gas sensors, alcohols, ketones.
- S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood. Sensors Int., 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
- K.G. Krishna, G. Umadevi, S. Parne, N. Pothukanuri. J. Mater. Chem. C, 11 (12), 3906 (2023). https://doi.org/10.1039/D2TC04690C
- Y. Shi, X. Li, X.F. Sun, X. Shao, H.Y. Wang. J. Alloys Compd., 171190 (2023). https://doi.org/10.1016/j.jallcom.2023.171190
- N.N. Yakovlev, A.V. Almaev, V.I. Nikolaev, B.O. Kushnarev, A.I. Pechnikov, S.I. Stepanov, E.V. Chernikov. Mater. Today Commun., 34, 105241 (2023). https://doi.org/10.1016/j.mtcomm.2022.105241
- B.M. Babar, S.H. Sutar, S.H. Mujawar, S.S. Patil, U.D. Babar, U.T. Pawar, P.M. Kadam, P.S. Patil, L.D. Kadam. Mater. Sci. Eng. B, 298, 116827 (2023). https://doi.org/10.1016/j.mseb.2023.116827
- X. Tian, Z. Hu, C. Jia, H. Wang, X. Wei. J. Environ. Chem. Eng., 111516 (2023). https://doi.org/10.1016/j.jece.2023.111516
- Y. Masuda. Sens. Actuators B Chem., 364, 131876 (2022). https://doi.org/10.1016/j.snb.2022.131876
- H. Bai, H. Guo, Y. Tan, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang, Y. Zheng. Sens. Actuators B Chem., 340, 129924 (2021). https://doi.org/10.1016/j.snb.2021.129924
- P.G. Choi, N. Izu, N. Shirahata, Y. Masuda. ACS Appl. Nano Mater., 2 (4), 1820 (2019). https://doi.org/10.1021/acsanm.8b01945
- J. Zhang, G. Chen, Q. Liu, C. Fan, D. Sun, Y. Tang, H. Sun, X. Feng. Angew. Chem. Int. Ed., 61 (39), e202209486 (2022). https://doi.org/10.1002/anie.202209486
- E. Huang, N. Rui, R. Rosales, J. Kang, S. Nemsak, S.D. Senanayake, J.A. Rodriguez, P. Liu. ACS Catal., 12 (18), 11253 (2022). https://doi.org/10.1021/acscatal.2c03060
- C. Yang, Z. Li, J. Liu, Y. Zhang, H. Liang, J. Fang, X. Bai, T. Zhao. Mater. Res. Bull., 150, 111787 (2022). https://doi.org/10.1016/j.materresbull.2022.111787
- M. Eslamian, A. Salehi, E. Nadimi. Surf. Sci., 708, 121817 (2021). https://doi.org/10.1016/j.susc.2021.121817
- A.A. Abokifa, K. Haddad, J. Fortner, C.S. Lo, P. Biswas. J. Mater. Chem. A, 6 (5), 2053 (2018). https://doi.org/10.1039/C7TA09535J
- J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys. Condens. Matter., 14 (11), 2745 (2002). https://doi.org/10.1088/0953-8984/14/11/302
- J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme. J. Comput. Chem., 27 (15), 1787 (2006). https://doi.org/10.1002/jcc.20495
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys., 132 (15), (2010). https://doi.org/10.1063/1.3382344
- E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, P. Gumbsch. Phys. Rev. Lett., 97 (17), 170201 (2006). https://doi.org/10.1103/PhysRevLett.97.170201
- M. Buttiker, Y. Imry, R. Landauer, S. Pinhas. Phys. Rev. B, 31 (10), 6207 (1985)
- M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro. Phys. Rev. B, 65 (16), 165401 (2002). https://doi.org/10.1103/PhysRevB.65.165401
- N. Papior, N. Lorente, T. Frederiksen, A. Garcia, M. Brandbyge. Comput. Phys. Commun., 212, 8 (2017). https://doi.org/10.1016/j.cpc.2016.09.022
- O.E. Glukhova, D.S. Shmygin. Beilstein J. Nanotechnol., 9 (1), 1254 (2018). https://doi.org/10.3762/bjnano.9.117
- M.A. Solomatin, M. Radovic, A.A. Petrunin, D.A. Kirilenko, A.S. Varezhnikov, G. Dubourg, M.Yu. Vasilkov, A.M. Bainyashev, A. Nesterovic, I. Kiselev, K.B. Kostin, Yu.P. Martynyuk, A.V. Gorokhovsky, S.S. Volchkov, D.A. Zimnyakov, N.M. Ushakov, V.G. Goffman, M.K. Rabchinskii, O.E. Glukhova, V.V. Sysoev. Chem. Eng. J., 474, 145934 (2023). https://doi.org/10.1016/j.cej.2023.145934
- A.A. Petrunin, O.E. Glukhova. Materials, 16 (1), 438 (2023). https://doi.org/10.3390/ma16010438