Chemiresistive response of SnO2 thin films to dissociative adsorption of alcohols and ketones
Petrunin A.A. 1, Glukhova O.E. 1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: sacha.petrynin@gmail.com, glukhovaoe@info.sgu.ru

PDF
Within the framework of ab initio method, a study of the dissociative adsorption process of alcohols (methanol, ethanol, isopropanol, butanol) and ketones (2-octanone, acetone, cyclohexanone, cyclopentanone) on the surface of a thin SnO2 film was conducted. It was established that the number of hydrogen atoms detached during dissociative adsorption does not significantly affect the binding energy. It was found that dissociative adsorption leads to the emergence of additional peaks in the density of states function in the valence band, which causes hybridization of electron clouds and an increase in resistance. It was demonstrated that the chemiresistive response during dissociative adsorption is, on average, higher for alcohols than for ketones. Keywords: tin oxide, thin films, DFT method, chemiresistive response, gas sensors, alcohols, ketones.
  1. S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood. Sensors Int., 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
  2. K.G. Krishna, G. Umadevi, S. Parne, N. Pothukanuri. J. Mater. Chem. C, 11 (12), 3906 (2023). https://doi.org/10.1039/D2TC04690C
  3. Y. Shi, X. Li, X.F. Sun, X. Shao, H.Y. Wang. J. Alloys Compd., 171190 (2023). https://doi.org/10.1016/j.jallcom.2023.171190
  4. N.N. Yakovlev, A.V. Almaev, V.I. Nikolaev, B.O. Kushnarev, A.I. Pechnikov, S.I. Stepanov, E.V. Chernikov. Mater. Today Commun., 34, 105241 (2023). https://doi.org/10.1016/j.mtcomm.2022.105241
  5. B.M. Babar, S.H. Sutar, S.H. Mujawar, S.S. Patil, U.D. Babar, U.T. Pawar, P.M. Kadam, P.S. Patil, L.D. Kadam. Mater. Sci. Eng. B, 298, 116827 (2023). https://doi.org/10.1016/j.mseb.2023.116827
  6. X. Tian, Z. Hu, C. Jia, H. Wang, X. Wei. J. Environ. Chem. Eng., 111516 (2023). https://doi.org/10.1016/j.jece.2023.111516
  7. Y. Masuda. Sens. Actuators B Chem., 364, 131876 (2022). https://doi.org/10.1016/j.snb.2022.131876
  8. H. Bai, H. Guo, Y. Tan, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang, Y. Zheng. Sens. Actuators B Chem., 340, 129924 (2021). https://doi.org/10.1016/j.snb.2021.129924
  9. P.G. Choi, N. Izu, N. Shirahata, Y. Masuda. ACS Appl. Nano Mater., 2 (4), 1820 (2019). https://doi.org/10.1021/acsanm.8b01945
  10. J. Zhang, G. Chen, Q. Liu, C. Fan, D. Sun, Y. Tang, H. Sun, X. Feng. Angew. Chem. Int. Ed., 61 (39), e202209486 (2022). https://doi.org/10.1002/anie.202209486
  11. E. Huang, N. Rui, R. Rosales, J. Kang, S. Nemsak, S.D. Senanayake, J.A. Rodriguez, P. Liu. ACS Catal., 12 (18), 11253 (2022). https://doi.org/10.1021/acscatal.2c03060
  12. C. Yang, Z. Li, J. Liu, Y. Zhang, H. Liang, J. Fang, X. Bai, T. Zhao. Mater. Res. Bull., 150, 111787 (2022). https://doi.org/10.1016/j.materresbull.2022.111787
  13. M. Eslamian, A. Salehi, E. Nadimi. Surf. Sci., 708, 121817 (2021). https://doi.org/10.1016/j.susc.2021.121817
  14. A.A. Abokifa, K. Haddad, J. Fortner, C.S. Lo, P. Biswas. J. Mater. Chem. A, 6 (5), 2053 (2018). https://doi.org/10.1039/C7TA09535J
  15. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys. Condens. Matter., 14 (11), 2745 (2002). https://doi.org/10.1088/0953-8984/14/11/302
  16. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  17. S. Grimme. J. Comput. Chem., 27 (15), 1787 (2006). https://doi.org/10.1002/jcc.20495
  18. S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys., 132 (15), (2010). https://doi.org/10.1063/1.3382344
  19. E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, P. Gumbsch. Phys. Rev. Lett., 97 (17), 170201 (2006). https://doi.org/10.1103/PhysRevLett.97.170201
  20. M. Buttiker, Y. Imry, R. Landauer, S. Pinhas. Phys. Rev. B, 31 (10), 6207 (1985)
  21. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro. Phys. Rev. B, 65 (16), 165401 (2002). https://doi.org/10.1103/PhysRevB.65.165401
  22. N. Papior, N. Lorente, T. Frederiksen, A. Garcia, M. Brandbyge. Comput. Phys. Commun., 212, 8 (2017). https://doi.org/10.1016/j.cpc.2016.09.022
  23. O.E. Glukhova, D.S. Shmygin. Beilstein J. Nanotechnol., 9 (1), 1254 (2018). https://doi.org/10.3762/bjnano.9.117
  24. M.A. Solomatin, M. Radovic, A.A. Petrunin, D.A. Kirilenko, A.S. Varezhnikov, G. Dubourg, M.Yu. Vasilkov, A.M. Bainyashev, A. Nesterovic, I. Kiselev, K.B. Kostin, Yu.P. Martynyuk, A.V. Gorokhovsky, S.S. Volchkov, D.A. Zimnyakov, N.M. Ushakov, V.G. Goffman, M.K. Rabchinskii, O.E. Glukhova, V.V. Sysoev. Chem. Eng. J., 474, 145934 (2023). https://doi.org/10.1016/j.cej.2023.145934
  25. A.A. Petrunin, O.E. Glukhova. Materials, 16 (1), 438 (2023). https://doi.org/10.3390/ma16010438
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru