Influence of FeS nanoinclusions on photoelectric characteristics of CdS:Fe
Stetsyura S.V. 1, Kharitonova P.G. 1, Zakharevich A.M. 1
1Saratov State University, Saratov, Russia
Email: haritonovapg@gmail.com

PDF
We modified the surface of single-crystal CdS using an organic coating of iron arachinate obtained by the Langmuir-Blodgett technology, followed by annealing of the resulting hybrid structure. We have demonstrated the possibility of forming a heterophase structure of the diluted magnetic semiconductor CdS-FeS, which has an extended range of properties. We carried out a study of the chemical composition before and after modification of the CdS surface by an organic coating. Variation the number of deposited iron arachinate monolayers made it possible to change the parameters of the limited iron source within the required limits, ensuring the formation of ferromagnetic phase nanoinclusions of size-defined at a target depth. The prediction of the size of the FeS phase and its distribution by depth was carried out by modeling the simultaneous processes of Fe diffusion, formation and precipitation of nanosized inclusions of the magnetic phase. We have determined the optimal number of monolayers in the coating (25-35), which ensures the formation of precipitates larger than 3 nm at a depth of at least 0.21 μm, and an increase in the photosensitivity of the obtained material by 20-40 times. Keywords: heterophase material, nanoscale precipitates, photosensitivity, Langmuir-Blodgett layers.
  1. J. Cibert, D. Scalbert. Spin Phys. Semicond., 157, 389 (2008), DOI: 10.1007/978-3-540-78820-1_13
  2. W. Zaleszczyk, E. Janik, A. Presz, P. D uzewski, S. Kret, W. Szuszkiewicz, J.F. Morhange, E. Dynowska, H. Kirmse, W. Neumann, A. Petroutchik, L.T. Baczewski, G. Karczewski, T. Wojtowicz. Nano Lett., 8 (11), 4061 (2008). DOI: 10.1021/nl802449g
  3. F. Matsukura, H. Ohno. Nanomagnetism and Spintronics, ed. Teruya Shinjo (Elsevier, Nanomagnetism and Spintronics, 277, 2009), DOI: 10.1016/B978-0-444-53114-8.00007-8
  4. W. Dobrowolski, J. Kossut, T. Story. Handbook Magn. Mater., 15, 289 (2003). DOI: 10.1016/S1567-2719(03)15003-2
  5. A. Bukhtiar, B. Zou. Mater. Adv., 5 (17), 6739 (2024). DOI: 10.1039/D4MA00523F
  6. D. Li, X. Zhang, W. He, Y. Peng, G. Xiang. Sci. China Mater., 67, 279 (2024). DOI: 10.1007/s40843-023-2657-2
  7. J. Li, X. Zhang, J. Lu, W. He, Y. Nie, Y. Peng, G. Xiang. Nanoscale, 15 (5), 2206 (2023). DOI: 10.1039/D2NR05244J
  8. Y. Fan. J. Phys.: Conf. Series, 2608, 012046 (2023). DOI: 10.1088/1742-6596/2608/1/012046
  9. R. Khan, I. Shigidi, S. Al Otaibi, K. Althubeiti, S.S. Abdullaev, N. Rahman, M. Sohail, A. Khan, S. Iqbal, T. Del Rosso, Q. Zaman, A. Khan. RSC Adv., 12 (55), 36126 (2022). DOI: 10.1039/D2RA06637H
  10. F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng. Mater. Sci. Eng.: R: Reports, 62 (1), 1 (2008). DOI: 10.1016/j.mser.2008.04.002
  11. B. Sharma, R. Lalwani, R. Das. Optik, 281, 170831 (2023). DOI: 10.1016/j.ijleo.2023.170831
  12. P. Li, C. Zhang, J. Lian, S. Gao, X. Wang. Solid State Commun., 151 (22), 1712 (2011). DOI: 10.1016/j.ssc.2011.07.042
  13. S.V. Stetsyura, P.G. Kharitonova. St. Petersburg State Polytechnical Univer. J. Phys. Mathem., 16 (1.2), 236 (2023). DOI: 10.18721/JPM.161.236
  14. L.A. Hernandez, F.Marti n, E. Berrios, G. Riveros, D.M. Gonzalez, E. Gonzalez, S. Lizama, F. Hernandez. Arabian J. Chem., 13 (12), 8758 (2020). DOI: 10.1016/j.arabjc.2020.10.006
  15. Y. Li, S. Chen, K. Zhang, S. Gu, J. Cao, Y. Xia, C. Yang, W. Sun, Z. Zhou. New J. Chem., 44 (34), 1144 (2020). DOI: 10.1039/D0NJ01424A
  16. K. Kaur, G.S. Lotey, N.K. Verma. J. Mater. Sci.: Mater. Electron., 25 (6), 2605 (2014). DOI: 10.1007/s10854-014-1918-y
  17. S.V. Stetsyura, P.G. Kharitonova, I.V. Malyar. Appl. Phys., 5, 66 (2020)
  18. S. Chandramohan, A. Kanjilal, S.N. Sarangi, S. Majumder, R. Sathyamoorthy, T. Som. Appl. Phys. A, 99 (4), 837 (2010). DOI: 10.1007/s00339-010-5598-z
  19. H.R. Dizaji, M. Ghasemian, M.H. Ehsani. Surf. Rev. Lett., 19 (2), 1250012 (2012). DOI: 10.1142/S0218625X12500126
  20. J.H. Al-Zahrani, M. El-Hagary, A. El-Taher. Mater. Sci. Semicond. Processing, 39, 74 (2015). DOI: 10.1016/j.mssp.2015.04.042
  21. B. Lohitha, S. Thanikaikarasan, S. Roji Marjorie. Mater. Today: Proceedings, 33 (7), 3068 (2020). DOI: 10.1016/j.matpr.2020.03.513
  22. Z.K. Heiba, A.M. El-naggar, M.B. Mohamed, A.M. Kamal, M.M. Osman, A.A. Albassam, G. Lakshminarayana. Optical Mater., 122, 111788 (2021). DOI: 10.1016/j.optmat.2021.111788
  23. N. Badera, B. Godbole, S.B. Srivastava, P.N. Vishwakarma, L.S. Sharath Chandra, D. Jain, M. Gangrade, T. Shripathi, V.G. Sathe, V. Ganesan. Appl. Surf. Sci., 254 (21), 7042 (2008). DOI: 10.1016/j.apsusc.2008.05.218
  24. S.V. Stetsyura, P.G. Kharitonova, E.G. Glukhovskoy. St. Petersburg State Polytechnical Univer. J. Phys. Mathemat., 15 (3.3), 250 (2022). DOI: 10.18721/JPM.153.349
  25. S.V. Stetsyura, E.G. Glukhovskoy, A.V. Kozlowski, I.V. Malyar. Tech. Phys., 60 (5), 746 (2015). DOI: 10.1134/S1063784215050266
  26. A. Mycielski. J. Appl. Phys., 63 (8), 3279 (1988). DOI: 10.1063/1.340813
  27. A.G. Rokakh. Pis'ma v ZhTF, 10 (13), 820 (1984) (in Russian)
  28. S.V. Bulyarskii, V.V. Svetukhin, O.V. Prikhod'ko. Semiconductors, 33 (11), 1157 (1999). DOI: 10.1134/1.1187839
  29. S.V. Stetsyura, I.V. Malyar, A.A. Serdobintsev, S.A. Klimova. Semiconductors, 43 (8), 1064 (2009). DOI: 10.1134/S1063782609080193
  30. S.G. Yudin, V.V. Bodnarchuk, V.V. Lazarev, A.I. Smirnova, S.V. Yablonskii. Liquid Crystals and their Application, 19 (4), 50 (2019). DOI: 10.18083/LCAppl.2019.4.50
  31. A.G. Rokakh, S.V. Stetsyura. Inorganic Mater., 33 (2), 153 (1997)
  32. M.K. Sheinkman, N.E. Korsunskaya. Fotokhimicheskiye reaktsii v poluprovodnikakh tipa A2B6. V kn. Fizika soyedineniy A2B6, ed. by A.N. Georgobiani, M.K. Sheinkman (Nauka, M., 1986)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru