The mechanism of the impurity redistribution between phases of variable and constant compositions
Lebedev V. G.
1,2, Lebedeva A. A.
1, Korobeynikov S. A.
1,31Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
2Institute of High Pressure Physics of the RAS, Moscow, Russia
3Udmurt State University, Izhevsk, Russia
Email: lvg@udsu.ru, alla.lebedeva.2014@gmail.com, sa.korobeynikov@yandex.ru
The problem with describing the redistribution of impurities at the interface between phases of variable and constant composition is closely related to the impossibility of thermodynamically determining chemical potential for a phase of constant composition as a derivative by a variable of the impurity concentration. It is shown that the deviation of the chemical potential of a variable composition phase from its equilibrium value, determined by the common tangent to the Gibbs energies of the interacting phases, can be chosen as the thermodynamic force for the impurity transfer at interface between phases of constant and variable composition. The equations of the phase field dynamics and of the impurity redistribution is derived from non-equilibrium thermodynamics. The results of numerical modeling show qualitative compliance with the expected behavior and are presented in the form of graphs of the concentration distribution and the phase field. Keywords: phase transformations, stoichiometric phases, phase field method.
- M. Hillert, Phase equilibia, phase equilibria, phase diagrams and phase transformations. Their thermodynamic basis, 2nd ed. (Cambridge University Press, Cambridge, 2008)
- D. Herlach, P. Galenko, D. Holland-Moritz, Metastable solids from undercooled melts (Elsevier, Amsterdam, 2007)
- J. Liu, X. Wang, A.P. Singh, H. Xu, F. Kong, F. Yang, Metals, 11, 2054 (2021). DOI: 10.3390/met11122054
- H. Miura, Phys. Rev. E, 98, 023311 (2018). DOI: 10.1103/PhysRevE.98.023311
- N. Provatas, K. Elder, Phase-field methods in materials science and engineering (Wiley-VCH, Weinheim, 2010)
- http://cpddb.nims.go.jp/cpddb/periodic.htm
- S.G. Menshikova, I.G. Shirinkina, I.G. Brodova, V.V. Brazhkin, Russ. Metall., 2019, 135 (2019). DOI: 10.1134/S0036029519020150
- V.G. Lebedev, JETP Lett., 115 (4), 226 (2022). DOI: 10.1134/S0021364022040075
- M.S. Park, S.L. Gibbons, R. Arroyave, Acta Mater., 60, 6278 (2012). DOI: 10.1016/j.actamat.2012.07.063
- H. Miura, Materialia, 31, 101860 (2023). DOI: 10.1016/j.mtla.2023.101860
- S.A. Korobeynikov, V.G. Lebedev, V.I. Ladyanov, Tech. Phys., 69 (10), 1500 (2024)]. DOI: 10.61011/TP.2024.10.59352.110-24
- C.P. Royall, F. Turci, T. Speck, J. Chem. Phys., 153, 090901 (2020). DOI: 10.1063/5.0006998
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.