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The mechanism of the impurity redistribution between phases of variable

and constant compositions
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The problem with describing the redistribution of impurities at the interface between phases of variable and

constant composition is closely related to the impossibility of thermodynamically determining chemical potential

for a phase of constant composition as a derivative by a variable of the impurity concentration. It is shown that the

deviation of the chemical potential of a variable composition phase from its equilibrium value, determined by the

common tangent to the Gibbs energies of the interacting phases, can be chosen as the thermodynamic force for

the impurity transfer at interface between phases of constant and variable composition. The equations of the phase

field dynamics and of the impurity redistribution is derived from non-equilibrium thermodynamics. The results

of numerical modeling show qualitative compliance with the expected behavior and are presented in the form of

graphs of the concentration distribution and the phase field.
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The process of impurity redistribution under phase

changes in the solutions with the participation of phases,

where no impurities dissolve, was studied within the phase

field method. Such phases with fixed stoichiometric ratio are

called
”
stoichiometric“ in contrast to variable composition

phases (VCP) [1]. Stoichiometric phases (SP) are present

in most technical alloys [2]. The relevance of the study of

processes to generate the materials containing SPs, depends

on their impact at strength characteristics [3] and is still

maintained [4].
The phase field method [5] is most sought after in the

theoretical description of the microstructure formation pro-

cess, since it relies on the thermodynamics of equilibrium

states of solutions based on Gibbs potentials [1]. The

latter as the functions of concentrations and temperature are

produced from the experiment and are interpolated between

the equilibrium states using the parameter of order ϕ (phase
field). For the SP the Gibbs energy defines the dependence

of energy on temperature at certain composition [6].
The objective of the study is theoretical description of

isothermal redistribution of the impurity between the fluid

phase of solution Al−Y with initial (molar) concentration

x(r, 0) and one of SPs (Al2Y) with (molar) concentration

of impurity x0. Fig. 1, a shows a typical example of molar

densities for real Gibbs potentials GL(x , T0) of fluid phase

and GS(T0) for SP Al2Y at temperature T0 = 1173K [6].
Previously the processes of SP formation in Al−Y were

studied many times experimentally [7]. The isothermality

condition suggests that the temperature is homogeneous in

space, but may change with time. In virtue of difference

between the coefficients of thermal conductivity and diffu-

sion by orders of magnitude, the impact of the temperature

distribution at the phase transition in this objective with two

phases is not relevant.

The main obstacle to the theoretical description of phase

changes with the participation of SP is the absence of

chemical potential in them. The VCP chemical potential

is [1] derivative µ = ∂G(x , T )/∂x , which determines the

driving forces both for the transfer of the impurity via the

phase boundaries and for the movement of the boundary

itself [8]. Since the molar concentration of impurity x0 in SP

is fixed, the absence of the derivative by concentration for

SP makes the direct transfer of the phase-field description of

VCP dynamics [8] to the SP case impossible. Attempts are

known [9] to replace the SP Gibbs energy with
”
narrow“

parabolic function of the composition, considering the

growth and degradation of the SP as VCP. Since the

result directly depends on the artifacts of selection (for
example, function curvature), such approach is ambiguous

and incompetent, as shown further.

The alternative approach was used by Miura [4,10] and

was continuted in paper [11]. This approach takes into

account the diffusion of the impurity only inside a fluid

phase. Incorrect description in the redistribution of the

impurity at the phase boundary in this approach manifests

itself in the form of appearance of a
”
plateau“ at ϕ = 0.5 in

the phase field curves [11].
Let us consider the conditions of phase growth according

to Hillert [1] (fig. 1, a). At fluid phase concentration x
in the interval of x1 < x < x2 the SP Al2Y must grow,

since the tangent to the curve GL(x , T0) passes higher

GS(T0). The latter means there is a driving force for

39



40 V.G. Lebedev, A.A. Lebedeva, S.A. Korobeynikov

Concentration x, mole fraction

0.25

0.50

0.2 0.60.40 0.8
0

0.75

Concentration x, mole fraction

0.2 0.60.40 0.8 1.0

1.00

N
o
rm

a
li

ze
d
 G

ib
b
s 

p
o
te

n
ti

a
ls

 a
n
d

ch
em

ic
a
l 

p
o
te

n
ti

a
l 

(d
im

en
si

o
n
le

ss
)

x1 x2

LG

SG

LG (x)

SG of the constant
composition phase

m  at x  = 0.55+ +

m  at x  = 0.500 0

m  at x  = 0.45– –

a b

LG (x) of liquid phase of AIY

SG  of compaund Al Y2

m (x) of liquid phase of AlY at x  and xL 1 2

Figure 1. a — dimensionless potentials [7] of fluid phase Al−Y and SP Al2Y. The solid line shows the dependence of the molar density

of potential GL on molar concentration Y. Molar density of SP Gibbs potential Al2Y GS is marked with a black circle. The dotted line

shows the chemical potentials of the fluid phase in the equilibrium positions of the fluid and SP (points x1, x2) at T = 1173K, the dashed

lines show equilibrium concentrations x1 and x2 . b — dimensionless model. Gibbs potentials of variable (GL) and fixed (GS) composition

phases. The change in the chemical potentials of the fluid phase is shown against the change in the impurity concentration. The inclined

dotted and dash-and-dot lines correspond to the SP chemical potentials for concentrations x0 = 0.5, x+ = 0.55 and x
−

= 0.45, the vertical

dash-and-dot line fixes the position of point GS in the fixed composition phase, the other designations correspond to fragment a .

the SP growth. At the initial concentration x beyond the

interval x1 < x < x2 the tangent to the fluid phase is below

the SP Gibbs energy, which corresponds to SP dissolution.

To consider the transfer of the impurity at the phase

boundary, let us conditionally draw in fig. 1, b the model

Gibbs potentials GL VCP and GS SP, and also chemical

potentials µ0(x0), µ+(x+), µ−(x−) for the concentration

values x0 = 0.55, x+ = 0.5, x− = 0.45. The conditions of

the phase equilibrium are reduced to the presence of the

common tangent between the phases: µ0(x0). Accordingly,
the equilibrium VCP in respect to the SP will be the VCP

with concentration x0. If the concentration in VCP differs

from the equilibrium one (x+ > x0 or x− < x0, fig. 1, b),
its chemical potential will differ from µ0(x0), therefore the

system changes to the equilibrium, pushing out (or pulling
inside) some of SP impurity. As a result the concentration

in the VCP changes, trying to reach the equilibrium one x0.

In fig. 1, b this corresponds to the balancing of chemical

potentials µ±(x±) ⇒ µ0(x0) Therefore, the thermodynamic

force defining the impurity transfer through the boundary

between the SP and VCP is related to the deviation of the

VCP potential µ(x) from its equilibrium value µ0. This

means that the flow of the impurity between the phases is

proportionate to the deviation of the VCP chemical potential

from the equilibrium value µ0:

JD ∝ µL(x) − µ0. (1)

Going back to fig. 1, a, note that the tangents to the curve

of the fluid phase Gibbs potential GL(x), passing through

the value GS SP at concentration x0, define the concentra-

tions x1 and x2, when the phases are equilibrium [1]. Let

the share p(ϕ) = ϕ2(3− 2ϕ) of the volume unit correspond

to SP Al2Y, and p(1− ϕ) = 1− p(ϕ) — to the fluid phase

share. In SP (S) the parameter of order ϕ = 1, inside the

fluid phase volume (L) ϕ = 0. Values of field 0 < ϕ < 1

correspond to the phase interface [6]. Neglecting the

change in the substance density at the phase boundaries

and recalculating the Gibbs potentials per unit of volume,

for interpolation of the energy by phases with account of

the surface energy (∇ϕ)2 we note the following [6]:

G(t) =

∫

(

(1− p(ϕ))GL(x , T0) + p(ϕ)GS(T0)

+ W g(ϕ) +
1

2
σ (∇ϕ)2

)

dV, (2)

where function g(ϕ) = ϕ2(1− ϕ)2 — potential barrier

between the thermodynamically stable phases of height W .

Parameters of the functionality (2) are expressed via the

coefficient of surface energy χ and half-width of the diffuse

boundary δ [9]:

σ = 3χδ, W =
6χ

δ
. (3)

The average concentration of the impurity in the

volume unit of solution 〈x〉 = (1− p(ϕ))x + p(ϕ)x0

(where x0 = 0.33 — impurity concentration in SP Al2Y,

x — impurity concentration in VCP) is subordinate to the
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Figure 2. Profiles of x(z ), ϕ(z ) and 〈x〉 concentration along the space interval at temperature T0 = 1173K. Inside the diffuse boundary

(at ϕ → 1) the deviation of the chemical potential of the fluid phase from the equilibrium value (µL − µ0)
2 → 0. a — initial concentration

of the impurity in the fluid phase C0 = 0.4 (x0 < C0 < x2); b — C0 = 0.3 (x1 < C0 < x0); c — C0 = 0.05 (C0 < x1); d — C0 = 0.8

(x2 < C0).

conservation principle and may only change due to the

diffusion flow JD , then

(1− p)
∂x
∂t

= −(x0 − x)
∂ p
∂t

− (1− p)∇ · JD, (4)

since diffusion may only happen in the share (1− p) of the
volume unit occupied by VCP.

Requesting the subtraction of full Gibbs energy (2) [9]
and assuming that the homogeneous boundary conditions of

the second kind were met for ϕ, and the diffuse flow at the

area boundary turns zero, we get the phase field relaxation

equations and the expression for JD . In the dimensionless

variables for the numerical modeling of the problem with

account of (3) we have

∂ϕ

∂t
= ∇2ϕ − 2g ′ − 1�̃p′, (5)

where p′ = d p/dϕ, g ′ = dg/dϕ — derivatives with respect

to the argument of functions p(ϕ), g(ϕ). The difference of

grand potentials is equal to 1�̃ = G̃S − G̃L − µ̃L(x0 − x).
With account of replacement (1) the full flow is

JD = −α∇
(

(1− p)(µ̃L − µ̃0)
)

, which leads to the following

diffusion equation

(1− p)
∂x
∂t

= −(x0 − x)
∂ p
∂t

+ (1− p)α∇2
(

(1− p)(µ̃L − µ̃0)
)

. (6)

Values with the tilde (1�̃, G̃α, µ̃) in (5), (6) are renor-

malized values. Usually the diffusion processes are slower

than the kinetic processes in the front, which provides

estimate α ≈ 10−2. Note that expression (6) is divided

into two contributions: Fick volume diffusion (JD ∝ ∇µL)
and contribution (JD ∝ 1µ∇p), providing for transfer of the

impurity between the phases.

For the numerical solution to equation (6) the ex-

plicit finite-difference algorithm was used in the area

p(ϕ) < 0.98. At p(ϕ) ≥ 0.98 in virtue of the small share

of the fluid phase it was assumed at it is balanced with

SP, which corresponds to x = x1,2 (depending on the initial

concentration of the solution). The algorithm stability was

determined empirically. The limitation by time increment is

1t ≤ 0.11411z 2, where 1z — space increment.

The equation for the phase field in the system (5) was

solved implicitly with the help of a gradient-stable algorithm.

The problem of unidimensional movement of the flat front
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along axis z was solved numerically. The integration

area includes a space interval with size of 100δ broken

down into 1000−4000 space increments. The boundary

conditions for the phase field at the ends of the interval

are the homogeneous conditions of the second kind. SP

(ϕ = 1) is on the left, and on the right — the solution

in VCP with concentration x(0, z ). The initial conditions

are x(0, z ) = C0 = const for the concentration in the fluid

phase and ϕ0(z ) = 1
2
(1− tanh(z − z 0)) for the phase field.

Numerical calculations showed that at the initial con-

centration of the fluid phase impurity in the interval

x1 < C0 < x2 the phase boundary in the solution starts

moving to the right to achieve the equilibrium state in the

entire area (fig. 2, a, b). If x0 < C0 < x2, the excess impurity

is displaced to the fluid phase area, and a ledge is formed,

which moves upstream the front (fig. 2, a). Otherwise,

x1 < C0 < x0, a dip is formed upstream the front. The

impurity is pumped out of the fluid phase to form SP

(fig. 2, b). At the initial concentration of solution C0 < x1

or at C0 > x2 the SP is dissolved (the front moves to the

left, fig. 2, c, d), therefore the concentration of the solution

upstream the front increases nearly to the equilibrium one,

which complicates the SP dissolution process.

The obtained study results suggest the following. 1. The

driving force to exchange the impurity at the phase bound-

ary is the deviation of the VCP chemical potentials from the

equilibrium values.

2. Numerical study of the isothermal unidimensional

model shows its validity and agrees with the previously

known facts.

3. Correct replacement (1) is confirmed by the absence

of
”
non-physical“ numerical solutions for the phase field

(in the form of a step at ϕ = 0.5 [11]).

4. If there is SP, the driving forces for the migration of

the phase boundary are expressed via the VCP chemical

potential. Therefore, all the attempts to interpolate the

SP Gibbs potentials with the V P Gibbs potentials will be

incorrect.

5. The model may serve as the basis for the computer

modeling of real materials. The latter is relevant in

connection with the development of the computer means to

model the structure formation of the processes in the non-

equilibrium states, including to study the glass formation

processes [12].
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