Comparative study of dielectric properties of polymer based composites containing barium titanate modified with different kinds of nanotubes
Mjakin S. V. 1,2, Guan Xingyu 1,3, Sychov M. M. 1,4, Boridko L. Sh.1, Sinelshchikova O. Yu. 4
1Saint-Petersburg State Institute of Technology (Technical University), Department of Theory of Materials Science
2Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
3Guiyang University (China), Department of Materials Science
4Grebenschikov Institute of Silicate Chemistry RAS, Saint-Petersburg, Russia
Email: svmjakin@spbti.ru, 117112353@qq.com, msychov@yahoo.com, boridkolubov@gmail.com, sinelshikova@mail.ru

PDF
The effect of modification of barium titanate (BaTiO3) submicron particles by the deposition of different kinds of nanotubes (carbon single- and multiwall, as well as comprising potassium polititanate K2Ti6O13) upon dielectric properties of composites obtained by incorporation of thus modified BaTiO3 into cyanoethyl ester of polyvinyl alcohol as a polymer binder is studied. The introduction of all the applied nanotubes in relatively small amounts (below 0.1 vol.%) provides a growth of the dielectric permittivity of the composites due to the improvement of their structural uniformity, while the addition of higher amounts of carbon nanotubes results in percolation with an abrupt increase of electrical conductivity due to the formation of conducting pathways comprising networks of interconnected nanotubes. The permittivity of the studied composites is found to grow with an increase of fractal dimension and decrease of lacunarity characterizing a non-uniformity of filler distribution in the polymer binder. Keywords: polymer composites, barium titanate, nanotubes, dielectric permittivity, fractal dimension, lacunarity.
  1. D. Tan. Adv. Funct. Mater., 30 (18), 1808567 (2020). DOI: 10.1002/adfm.201808567
  2. W. Jiao. Acta Phys. Sinica, 69 (21), 217702-1-217702-14 (2020). DOI: 10.1021/acsaem.9b01052
  3. G. Jian, Y. Jiao, Q. Meng, Z. Wei, Zhang, J. Yan, C. Moon, K.-S. C.-P. Wong. Commun. Mater., 1, 91 (2020). DOI: 10.1038/s43246-020-00092-0
  4. Q. Wang, J. Zhang, Z. Zhang, Y. Hao, K. Bi. Adv. Compos. Hybrid. Mater., 3 (1), 58 (2020). DOI: 10.1007/s42114-020-00138-4
  5. V. Tomer, G. Polizos, E. Manias, C.A. Randall. J. Appl. Phys., 108 (7), 074116 (2010). DOI: 10.1063/1.3487471
  6. F.E. Bouharras, M. Raihane, B. Ameduri. Progr. Mater. Sci., 100670 (2020). DOI: 10.1016/j.pmatsci.2020.100670
  7. S.S. Chauhan, U.M. Bhatt, Gautam, P.S. Thote, M.M. Joglekar, S.K. Manhas. Sens. Actuator A Phys., 304, 111879 (2020). DOI: 10.1016/j.sna.2020.111879
  8. P. Prajapati, R. Bhunia, S. Siddqui, A. Garg, R. Gupta. ACS Appl. Mater. Interfaces, 11, 14329 (2019). DOI: 10.1021/acsami.9b01359
  9. A.S.M.I. Uddin, D. Lee, C. Cho, B. Kim. Coatings, 12, 77 (2022). DOI: 10.3390/coatings12010077
  10. B. Luo, X. Wang, Y. Wang, L. Li. J. Mater. Chem. A, 2, 510 (2014). DOI: 10.1039/C3TA14107A
  11. R.J. Sengwa, N. Kumar, M. Saraswat. Mater. Today Commun., 35, 105625 (2023). DOI: 10.1016/j.mtcomm.2023.105625
  12. D. Hou, J. Zhou, W. Chen, P. Zhang, J. Shen, Z. Jian. Ceram. Int., 48, 22691 (2022). DOI: 10.1016/j.compscitech.2019.107686
  13. M.M. Sychov, E.S. Vasina, S.V. Mjakin, N.N. Rozhkova, N.T. Sudar. Kondensirovannye sredy i mezhfaznye granizy, 16, 354 (2014)
  14. S.V. Mjakin, A.G. Chekuryaev, A.I. Golubeva, M.M. Sychov, T.V. Lukashova. Bull. Saint-Petersburg State Institute of Technology (Technical University), 49 (75), 66 (2019)
  15. S. Mjakin, M. Sychov, A. Chekuryaev, N. Sudar. Mater. Today: Proceed., 30 (3), 603 (2020). DOI: 10.1016/j.matpr.2020.01.414
  16. S.V. Mjakin, V.A. Garipova, M.M. Sychov. Bull. Saint-Petersburg State Institute of Technology (Technical University), 50 (76), 68 (2019)
  17. G.E. Yalovega, M. Brzhezinskaya, V.O. Dmitriev, V.A. Shmatko, I.V. Ershov, A.A. Ulyankina, D.V. Chernysheva, N.V. Smirnova. Nanomaterials, 14 (947), 2024. DOI: 10.3390/ nano14110947
  18. M. Jung, P. Sivakumar, H.S. Park. J. Phys. Energy, 5, 025005 (2023). DOI: 10.1088/2515-7655/acbf77
  19. A.G. Chekuryaev, M.M. Sychev, S.V. Myakin. Phys. Solid State, 63, 858 (2021). DOI: 10.1134/S1063783421060032
  20. M. Sychov, A. Chekuryaev, S. Mjakin. Fractal Characterization of Microstructure of Materials and Correlation with Their Properties on the Basis of Digital Materials Science Concept, Ch. in the book "Fractal Analysis --- Applications and Updates (Intech Open Publishers, 2023), DOI: 10.5772/intechopen.1002602
  21. N.A. Morozov, O.Yu. Sinelshchikova, N.V. Besprozvannykh, T.P. Maslennikova. Russ. J. Inorg. Chem., 65, 1127 (2020). DOI: 10.1134/S0036023620080124
  22. V.G. Goffman, A.V. Gorokhovsky, M.M. Kompan, E.V. Tretyachenko, O.S. Telegina, A.V. Kovnev, F.S. Fedorov. J. Alloys Compounds, 615 (Suppl. 1), S526 (2014). DOI: 10.1016/j.jallcom.2014.01.121

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru