Composite Materials with Nanostructured Carbon Inclusions for Sliding Electrical Contacts
Lukina I. N.1, Ekimov E. A.2, Drozdova E. I.1, Chernogorova O. P.1, Dormidontov N. A.1
1Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
2Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russia
Email: lukina.i.n@yandex.ru

PDF
Composite materials (CM) for miniature sliding bearings and current leads have been synthesized from regular brass or copper 3D conducting frameworks with holes filled with C60 fullerites. The CM samples were also obtained by thermobaric treatment of L80 brass wire networks with 0.3 and 0.5 mm slots filled with C60 fullerites. The processing parameters ensure the consolidation of the workpiece and the transformation of fullerites in the cells into monolithic inclusions of a superelastic hard carbon with a nanocluster graphene structure. The hardness and indentation modulus of the carbon phase in the cells of 0.3 mm in a side size (HIT = 24 GPa, EIT = 139 GPa) are higher than in the cells of 0.5 mm in a side size (HIT = 18 GPa, EIT = 105 GPa) at an elastic recovery of 84%. The carbon inclusions provide good tribological properties of the CM: their friction coefficient CM (μ = 0.09-0.13) is lower than that of brass (μ = 0.3). Due to the presence of continuous conductors in the form of a brass grid, the experimental CM crystals have a sufficiently high electrical conductivity (36 MS/m), which is slightly lower than that of the copper standard (42 MS/m), but substantially higher than that of the CM obtained from mixtures of metal and fullerite powders (10 MS/m). Keywords: fullerenes, high pressure, structure, hardness, tribological properties, electrical conductivity.
  1. N.K. Myshkin, V.V. Konchits, M. Braunovich. Elektricheskie kontakty (Izdat. dom "Intellekt", Dolgoprudny 2008) (in Russian)
  2. M. Balasubramanian. Composite materials and processing (Boca Raton e.a.: CRC Press, 2014)
  3. V.D. Blank, S.G. Buga, G.A. Dubitsky, N.R. Serebryanaya, M.Yu. Popov, B. Sundqvist. Carbon, 36 (4), 319 (1998). DOI: 10.1016/S0008-6223(97)00234-0
  4. V.V. Brazhkin, A.G. Lyapin. J. Superhard Mater., 34 (6), 400 (2012). DOI: 10.3103/S1063457612060135
  5. M. Alvarez-Murga, J.L. Hodeau. Carbon, 82 (C), 381 (2015). DOI: 10.1016/j.carbon.2014.10.083
  6. O. Chernogorova, E. Drozdova, I. Ovchinnikova, A. Soldatov, E. Ekimov. J. Appl. Phys., 111, 112601 (2012). DOI: 10.1063/1.4726155
  7. A. Leyland, A. Matthews. Surf. Coat. Technol., 177- 178, 317 (2004). DOI: 10.1016/j.surfcoat.2003.09.011
  8. V.V. Izmailov, I.N. Ushakova, E.I. Drozdova, O.P. Tchernogorova, E.A. Ekimov, D.A. Gusev. Trenie i iznos, 37 (3), 328 (2016) (in Russian). DOI: 10.3103/S1068366616030089
  9. A.C. Ferrari. Mat. Res. Soc. Symp. Proc., 675, 1151 (2001). DOI: 10.1557/PROC-675-W11.5.1
  10. A.C. Ferrari, J. Robertson. Phys. Rev. B: Condens. Matter., 61 (20), 14095 (2000). DOI: 10.1103/PhysRevB.61.14095

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru