Modification of proton-conducting perfluorinated membranes with graphene oxide
Kulvelis Yu. V. 1, Lebedev V.T. 1, Shvidchenko A. V. 2, Tudupova B. B. 1,2, Kuular V. I. 1,2, Yevlampieva N. P. 3, Marinenko E. A. 4, Odinokov A. S. 5, Primachenko O. N. 4, Gofman I. V. 4
1Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State University, St. Petersburg, Russia
4Branch of Petersburg Institute of Nuclear Physics named by B.P. Konstantinov of National Research Center "Kurchatov Institute" - Institute of Macromolecular Compounds, Saint-Petersburg, Russia
5Russian Scientific Center "Applied Chemistry", St. Petersburg, Russia
Email: kulvelis_yv@pnpi.nrcki.ru, lebedev_vt@pnpi.nrcki.ru, avshvid@mail.ioffe.ru, biligma0201@gmail.com, kdm-333@mail.ru, n.yevlampieva@spbu.ru, emarinenkospb@gmail.com, a.odinokov@giph.su, alex-prima@mail.ru, gofman@imc.macro.ru

PDF
Composite proton-conducting membranes with graphene oxide based on a perfluorinated copolymer of the AquivionoledR type were obtained by casting a mixture of components onto a substrate with subsequent evaporation of the solvent. At fractions of CGO≥ 0.05 wt.%, graphene oxide as a modifier in the matrix created large-scale fibril-type structures (cross size ~ 1 mm) with parallel packing on scales ~ 10 mm. Within the fibrils, scanning electron microscopy data revealed a parallel packing of graphene oxide sheets alternating with polymer layers. At CGO = 0.1 and 0.2 wt.% tensile tests of samples along the fibrils showed increased elastic modulus and elastic limit relative to the data for transverse deformation. Less modifier fractions (0.02; 0.05 wt.%) caused strengthening, an increase in the deformation resource and proton conductivity (~ 10%, data for 22; 50oC) mainly along the fibrils. The found relationship between the structure, mechanical and conductive properties of composites with variation in the modifier fraction will allow for the targeted design of the membranes, regulating their properties and degree of anisotropy. Keywords: composites, nanomaterials, layered structures, strength, proton conductivity.
  1. K.R. Mugtasimova, A.P. Melnikov, E.A. Galitskaya, A.M. Kashin, Yu.A. Dobrovolskiy, G.M. Don, V.S. Likhomanov, A.V. Sivak, V.V. Sinitsyn. Ionics, 24, 3897 (2018). DOI: 10.1007/s11581-018-2531-5
  2. M. Vinothkannan, A.R. Kim, G.G. Kumar, D.J. Yoo. RSC Adv., 8, 7494 (2018). DOI: 10.1039/c7ra12768e
  3. B. Barik, A. Kumar, Y. Namgung, L. Mathur, J.-Y. Park, S.-J. Song. Int. J. Hydr. En., 48 (75), 29313 (2023). DOI: 10.1016/j.ijhydene.2023.04.102
  4. J. Ruhkopf, U. Plachetka, M. Moeller, O. Pasdag, I. Radev, V. Peinecke, M. Hepp, C. Wiktor, M.R. Lohe, X. Feng, B. Butz, M.C. Lemme. ACS Appl. Eng. Mater., 1 (3), 947 (2023). DOI: 10.1021/acsaenm.2c00234
  5. R.M.N. Javed, A.Al-Othman, M. Tawalbeh, A.G. Olabi. Renew. Sustain. En. Rev., 168, 112836 (2022). DOI: 10.1016/j.rser.2022.112836
  6. D. Ion-Ebrasu, B.G. Pollet, A. Spinu-Zaulet, A. Soare, E. Carcadea, M. Varlam, S. Caprarescu. Int. J. Hydr. En., 44 (21), 10190 (2019). DOI: 10.1016/j.ijhydene.2019.02.148
  7. M.V. Gudkov, D.Yu. Stolyarova, K.A. Shiyanova, V.P. Mel'nikov. Polymer Science, Series C, 64, 40 (2022). DOI: 10.1134/S1811238222010027
  8. D.A. Gkika, V. Karmali, D.A. Lambropoulou, A.C. Mitropoulos, G.Z. Kyzas. Membranes, 13, 127 (2023). DOI: 10.3390/membranes13020127
  9. A. Kausar, I. Ahmad, T. Zhao, O. Aldaghri, M.H. Eisa. Processes, 11, 927 (2023). DOI: 10.3390/pr11030927
  10. E.O. Ezugbe, S. Rathilal. Membranes, 10, 89 (2020). DOI: 10.3390/membranes10050089
  11. C. Lavorato, E. Fontananova. Microorganisms, 11, 310 (2023). DOI: 10.3390/microorganisms11020310
  12. Y. Kan, J.V. Bondareva, E.S. Statnik, E.V. Koudan, E.V. Ippolitov, M.S. Podporin, P.A. Kovaleva, R.R. Kapaev, A.M. Gordeeva, J. Cvjetinovic, D.A. Gorin, S.A. Evlashin, A.I. Salimon, F.S. Senatov, A.M. Korsunsky. Int. J. Mol. Sci., 24, 6255 (2023). DOI: 10.3390/ijms24076255
  13. A. Ali, M.I. Vohra, A. Nadeem, B.S. Al-Anzi, M. Iqbal, A.A. Memon, A.H. Jatoi, J. Akhtar, J. Yang, K.H. Thebo. ACS Appl. Polym. Mater., 6 (8), 4747 (2024). DOI: 10.1021/acsapm.4c00285
  14. F. Dorey, L.A. Furer, S. Zehnder, R. Furrer, R. Bronnimann, I. Shorubalko, T. Buerki-Thurnherr. J. Mater. Chem. B, 11 (42), 10097 (2023). DOI: 10.1039/D3TB01784B
  15. A.K. Evseev, S.V. Zhuravel, A.Yu. Alentiev, I.V. Goroncharovskaya, S.S. Petrikov. Membr. Membr. Technol., 1 (4), 201 (2019). DOI: 10.1134/S2517751619040024
  16. P.L. Ivanov, A.Yu. Alentyev, S.V. Chirkov. Membrane hollow fiber blood oxygenator (Patent RU 2 750 524 C1, 2020) (in Russian)
  17. E. Pasqualotto, E. Cretaio, M. Scaramuzza, A. De Toni, L. Franchin, A. Paccagnella, S. Bonaldo. Biosensors, 12 (12), 1079 (2022). DOI: 10.3390/bios12121079
  18. V.V. Zhmakin, S.Yu. Markova, V.V. Teplyakov, M.G. Shalygin. Membr. Membr. Technol., 5 (2), 107 (2023). DOI: 10.1134/s2517751623020087
  19. M. Schalenbach, T. Hoefner, P. Paciok, M. Carmo, W. Lueke, D. Stolten. J. Phys. Chem. C, 119 (45), 25145 (2015). DOI: 10.1021/acs.jpcc.5b04155
  20. Y. Cheng, C.I. Moraru. Colloids Surf. B: Biointerfaces, 162, 16 (2018). DOI: 10.1016/j.colsurfb.2017.11.016
  21. R. Wilson, G. George, A.J. Jose. In: New polymer nanocomposites for environmental remediation, eds. C.M. Hussain, A.K. Mishra (Elsevier Inc., 2018), Ch. 18, p. 457. DOI: 10.1016/B978-0-12-811033-1.00018-4
  22. S.F. Nitodas, M. Das, R. Shah. Membranes, 12, 454 (2022). DOI: 10.3390/membranes12050454
  23. E.N. Karaulova, E.I. Bagrii. Rus. Chem. Rev., 68 (11), 889 (1999). DOI: 10.1070/RC1999v068n11ABEH000499
  24. T.P. Dyachkova, A.G. Tkachev Methods of functionalization and modification of carbon nanotubes (Spektr, M., 2013) (in Russian). 152 s. ISBN 978-5-4442-0050-6
  25. A.E. Aleksenskii. In: Detonation Nanodiamonds. Science and Applications, eds. A.Y. Vul, O.A. Shenderova (Pan Stanford Publishing, Danvers, MA, USA, 2014), p. 37-72
  26. A. Aleksenskii, M. Bleuel, A. Bosak, A. Chumakova, A. Dideikin, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev, V. Nesvizhevsky, A. Nezvanov, R. Schweins, A. Shvidchenko, A. Strelkov, K. Turlybekuly, A. Vul', K. Zhernenkov. Nanomaterials, 11 (8), 1945 (2021). DOI: 10.3390/nano11081945
  27. O.V. Tomchuk, V. Ryukhtin, O. Ivankov, A.Ya. Vul', A.E. Aleksenskii, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev. Fuller. Nanotub. Carbon Nanostructures, 28 (4), 272 (2020). DOI: 10.1080/1536383X.2019.1697686
  28. A.V. Petrov, K.N. Semenov, I.V. Murin. Russ. J. Gen. Chem., 90 (5), 927 (2020). DOI: 10.1134/S1070363220050308
  29. I.I. Kulakova, G.V. Lisichkin. Russ. J. Gen. Chem., 90 (10), 1921 (2020). DOI: 10.1134/S1070363220100151
  30. D. Chen, H. Feng, J. Li. Chem. Rev., 112 (11), 6027 (2012). DOI: 10.1021/cr300115g
  31. V.N. Postnov, N.A. Melnikova, G.A. Shulmeister, A.G. Novikov, I.V. Murin, A.N. Zhukov. Russ. J. Gen. Chem., 87 (11), 2754 (2017). DOI: 10.1134/S1070363217110391
  32. V.T. Lebedev, Y.V. Kulvelis, A.V. Shvidchenko, O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, A.I. Kuklin, O.I. Ivankov. Membranes, 13, 850 (2023). DOI: 10.3390/membranes13110850
  33. V.T. Lebedev, Yu.V. Kulvelis, A.S. Odinokov, O.N. Primachenko, S.V. Kononova, E.M. Ivan'kova, V.A. Orlova, N.P. Yevlampieva, E.A. Marinenko, I.V. Gofman, A.V. Shvidchenko, G.S. Peters. J. Membr. Sci. Lett., 4 (1), 100070 (2024). DOI: 10.1016/j.memlet.2024.100070
  34. D.M. Sterescu, L. Bolhuis-Versteeg, N.F.A. van der Vegt, D. Stamatialis, M. Wessling. Macromol. Rapid Comm., 25 (19), 1674 (2004). DOI: 10.1002/marc.200400296
  35. A.F. Yazid, H. Mukhtar, R. Nasir, D.F. Mohshim. Membranes, 12 (6), 589 (2022). DOI: 10.3390/membranes12060589
  36. P. Kamedulski, M. Skorupska, P. Binkowski, W. Arendarska, A. Ilnicka, J.P. Lukaszewicz. Sci. Rep., 11, 22054 (2021). DOI: 10.1038/s41598-021-01154-0
  37. S.K. Kandasamy. In: Graphene, Nanotubes and Quantum Dots-Based Nanotechnology. Fundamentals and Applications (Woodhead Publishing Series in Electronic and Optical Materials, 2022), Ch. 8, p. 155-172. DOI: 10.1016/B978-0-323-85457-3.00024-4
  38. A.Ya. Vul, A.T. Dideikin, A.E. Aleksenskiy, M.V. Baidakova. In: Nanodiamond, RSC Nanoscience and Nanotechnology, ed. O.A. Williams (RSC Publishing, Cardiff, 2014)
  39. A.B. Yaroslavtsev, I.A. Stenina. Mendeleev Commun., 31 (4), 423 (2021). DOI: 10.1016/j.mencom.2021.07.001
  40. A.B. Yaroslavtsev, I.A. Stenina, D.V. Golubenko. Pure Appl. Chem., 92 (7), 1147 (2020). DOI: 10.1515/pac-2019-1208
  41. Z. Cui, E. Drioli, Y.M. Lee. Prog. Polym. Sci., 39 (1), 164 (2014). DOI: 10.1016/j.progpolymsci.2013.07.008
  42. T. Li, J. Shen, G. Chen, S. Guo, G. Xie. ACS Omega, 5 (28), 17628 (2020). DOI: 10.1021/acsomega.0c02110
  43. K. Schmidt-Rohr, Q. Chen. Nat. Mater., 7, 75 (2008). DOI: 10.1038/nmat2074
  44. A. Eisenberg. Macromolecules, 3 (2), 147 (1970). DOI: 10.1021/ma60014a006
  45. A. Eisenberg, B. Hird, R.B. Moore. Macromolecules, 23 (18), 4098 (1990). DOI: 10.1021/ma00220a012
  46. M. Fujimura, T. Hashimoto, H. Kawai. Macromolecules, 15 (1), 136 (1982). DOI: 10.1021/ma00229a028
  47. G. Gebel. Macromolecules, 33 (13), 4850 (2000). DOI: 10.1021/ma9912709
  48. A.-L. Rollet, O. Diat, G. Gebel. J. Phys. Chem. B., 106 (12), 3033 (2002). DOI: 10.1021/jp020245t
  49. L. Rubatat, G. Gebel, O. Diat. Macromolecules, 37 (20), 7772 (2004). DOI: 10.1021/ma049683j
  50. G. Gebel, O. Diat. Fuel Cells, 5 (2), 261 (2005). DOI: 10.1002/fuce.200400080
  51. K.-D. Kreuer. Chem. Mater., 26 (1), 361 (2014). DOI: 10.1021/cm402742u
  52. K.-D. Kreuer, G. Portale. Adv. Funct. Mater., 23 (43), 5390 (2013). DOI: 10.1002/adfm.201300376
  53. J.A. Elliott, D. Wu, S.J. Paddison, R.B. Moore. Soft Matter, 7, 6820 (2011). DOI: 10.1039/C1SM00002K
  54. W.S. Hummers, R.E. Offeman. J. Am. Chem. Soc., 80, 1339 (1958). DOI: 10.1021/ja01539a017
  55. M.K. Rabchinskii, A.D. Trofimuk, A.V. Shvidchenko, M.V. Baidakova, S.I. Pavlov, D.A. Kirilenko, Yu.V. Kulvelis, M.V. Gudkov, K.A. Shiyanova, V.S. Koval, G.S. Peters, V.T. Lebedev, V.P. Melnikov, A.T. Dideikin, P.N. Brunkov. Tech. Phys., 67 (12), 1611 (2022). DOI: 10.21883/TP.2022.12.55197.208-22
  56. O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, Y.V. Kulvelis, V.G. Barabanov, S.V. Kononova. J. Fluor. Chem., 244, 109736 (2021). DOI: 10.1016/j.jfluchem.2021.109736
  57. O.N. Primachenko, Yu.V. Kulvelis, A.S. Odinokov, N.V. Glebova, A.O. Krasnova, L.A. Antokolskiy, A.A. Nechitailov, A.V. Shvidchenko, I.V. Gofman, E.A. Marinenko, N.P. Yevlampieva, V.T. Lebedev, A.I. Kuklin. Membranes, 12 (9), 827 (2022). DOI: 10.3390/membranes12090827
  58. O.N. Primachenko, A.S. Odinokov, V.G. Barabanov, V.P. Tyul'mankov, E.A. Marinenko, I.V. Gofman, S.S. Ivanchev. Russ. J. Appl. Chem., 91, 101 (2018). DOI: 10.1134/S1070427218010160

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru