Kulvelis Yu. V.
1, Lebedev V.T.
1, Shvidchenko A. V.
2, Tudupova B. B.
1,2, Kuular V. I.
1,2, Yevlampieva N. P.
3, Marinenko E. A.
4, Odinokov A. S.
5, Primachenko O. N.
4, Gofman I. V.
41Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State University, St. Petersburg, Russia
4Branch of Petersburg Institute of Nuclear Physics named by B.P. Konstantinov of National Research Center "Kurchatov Institute" - Institute of Macromolecular Compounds, Saint-Petersburg, Russia
5Russian Scientific Center "Applied Chemistry", St. Petersburg, Russia
Email: kulvelis_yv@pnpi.nrcki.ru, lebedev_vt@pnpi.nrcki.ru, avshvid@mail.ioffe.ru, biligma0201@gmail.com, kdm-333@mail.ru, n.yevlampieva@spbu.ru, emarinenkospb@gmail.com, a.odinokov@giph.su, alex-prima@mail.ru, gofman@imc.macro.ru
Composite proton-conducting membranes with graphene oxide based on a perfluorinated copolymer of the AquivionoledR type were obtained by casting a mixture of components onto a substrate with subsequent evaporation of the solvent. At fractions of CGO≥ 0.05 wt.%, graphene oxide as a modifier in the matrix created large-scale fibril-type structures (cross size ~ 1 mm) with parallel packing on scales ~ 10 mm. Within the fibrils, scanning electron microscopy data revealed a parallel packing of graphene oxide sheets alternating with polymer layers. At CGO = 0.1 and 0.2 wt.% tensile tests of samples along the fibrils showed increased elastic modulus and elastic limit relative to the data for transverse deformation. Less modifier fractions (0.02; 0.05 wt.%) caused strengthening, an increase in the deformation resource and proton conductivity (~ 10%, data for 22; 50oC) mainly along the fibrils. The found relationship between the structure, mechanical and conductive properties of composites with variation in the modifier fraction will allow for the targeted design of the membranes, regulating their properties and degree of anisotropy. Keywords: composites, nanomaterials, layered structures, strength, proton conductivity.
- K.R. Mugtasimova, A.P. Melnikov, E.A. Galitskaya, A.M. Kashin, Yu.A. Dobrovolskiy, G.M. Don, V.S. Likhomanov, A.V. Sivak, V.V. Sinitsyn. Ionics, 24, 3897 (2018). DOI: 10.1007/s11581-018-2531-5
- M. Vinothkannan, A.R. Kim, G.G. Kumar, D.J. Yoo. RSC Adv., 8, 7494 (2018). DOI: 10.1039/c7ra12768e
- B. Barik, A. Kumar, Y. Namgung, L. Mathur, J.-Y. Park, S.-J. Song. Int. J. Hydr. En., 48 (75), 29313 (2023). DOI: 10.1016/j.ijhydene.2023.04.102
- J. Ruhkopf, U. Plachetka, M. Moeller, O. Pasdag, I. Radev, V. Peinecke, M. Hepp, C. Wiktor, M.R. Lohe, X. Feng, B. Butz, M.C. Lemme. ACS Appl. Eng. Mater., 1 (3), 947 (2023). DOI: 10.1021/acsaenm.2c00234
- R.M.N. Javed, A.Al-Othman, M. Tawalbeh, A.G. Olabi. Renew. Sustain. En. Rev., 168, 112836 (2022). DOI: 10.1016/j.rser.2022.112836
- D. Ion-Ebrasu, B.G. Pollet, A. Spinu-Zaulet, A. Soare, E. Carcadea, M. Varlam, S. Caprarescu. Int. J. Hydr. En., 44 (21), 10190 (2019). DOI: 10.1016/j.ijhydene.2019.02.148
- M.V. Gudkov, D.Yu. Stolyarova, K.A. Shiyanova, V.P. Mel'nikov. Polymer Science, Series C, 64, 40 (2022). DOI: 10.1134/S1811238222010027
- D.A. Gkika, V. Karmali, D.A. Lambropoulou, A.C. Mitropoulos, G.Z. Kyzas. Membranes, 13, 127 (2023). DOI: 10.3390/membranes13020127
- A. Kausar, I. Ahmad, T. Zhao, O. Aldaghri, M.H. Eisa. Processes, 11, 927 (2023). DOI: 10.3390/pr11030927
- E.O. Ezugbe, S. Rathilal. Membranes, 10, 89 (2020). DOI: 10.3390/membranes10050089
- C. Lavorato, E. Fontananova. Microorganisms, 11, 310 (2023). DOI: 10.3390/microorganisms11020310
- Y. Kan, J.V. Bondareva, E.S. Statnik, E.V. Koudan, E.V. Ippolitov, M.S. Podporin, P.A. Kovaleva, R.R. Kapaev, A.M. Gordeeva, J. Cvjetinovic, D.A. Gorin, S.A. Evlashin, A.I. Salimon, F.S. Senatov, A.M. Korsunsky. Int. J. Mol. Sci., 24, 6255 (2023). DOI: 10.3390/ijms24076255
- A. Ali, M.I. Vohra, A. Nadeem, B.S. Al-Anzi, M. Iqbal, A.A. Memon, A.H. Jatoi, J. Akhtar, J. Yang, K.H. Thebo. ACS Appl. Polym. Mater., 6 (8), 4747 (2024). DOI: 10.1021/acsapm.4c00285
- F. Dorey, L.A. Furer, S. Zehnder, R. Furrer, R. Bronnimann, I. Shorubalko, T. Buerki-Thurnherr. J. Mater. Chem. B, 11 (42), 10097 (2023). DOI: 10.1039/D3TB01784B
- A.K. Evseev, S.V. Zhuravel, A.Yu. Alentiev, I.V. Goroncharovskaya, S.S. Petrikov. Membr. Membr. Technol., 1 (4), 201 (2019). DOI: 10.1134/S2517751619040024
- P.L. Ivanov, A.Yu. Alentyev, S.V. Chirkov. Membrane hollow fiber blood oxygenator (Patent RU 2 750 524 C1, 2020) (in Russian)
- E. Pasqualotto, E. Cretaio, M. Scaramuzza, A. De Toni, L. Franchin, A. Paccagnella, S. Bonaldo. Biosensors, 12 (12), 1079 (2022). DOI: 10.3390/bios12121079
- V.V. Zhmakin, S.Yu. Markova, V.V. Teplyakov, M.G. Shalygin. Membr. Membr. Technol., 5 (2), 107 (2023). DOI: 10.1134/s2517751623020087
- M. Schalenbach, T. Hoefner, P. Paciok, M. Carmo, W. Lueke, D. Stolten. J. Phys. Chem. C, 119 (45), 25145 (2015). DOI: 10.1021/acs.jpcc.5b04155
- Y. Cheng, C.I. Moraru. Colloids Surf. B: Biointerfaces, 162, 16 (2018). DOI: 10.1016/j.colsurfb.2017.11.016
- R. Wilson, G. George, A.J. Jose. In: New polymer nanocomposites for environmental remediation, eds. C.M. Hussain, A.K. Mishra (Elsevier Inc., 2018), Ch. 18, p. 457. DOI: 10.1016/B978-0-12-811033-1.00018-4
- S.F. Nitodas, M. Das, R. Shah. Membranes, 12, 454 (2022). DOI: 10.3390/membranes12050454
- E.N. Karaulova, E.I. Bagrii. Rus. Chem. Rev., 68 (11), 889 (1999). DOI: 10.1070/RC1999v068n11ABEH000499
- T.P. Dyachkova, A.G. Tkachev Methods of functionalization and modification of carbon nanotubes (Spektr, M., 2013) (in Russian). 152 s. ISBN 978-5-4442-0050-6
- A.E. Aleksenskii. In: Detonation Nanodiamonds. Science and Applications, eds. A.Y. Vul, O.A. Shenderova (Pan Stanford Publishing, Danvers, MA, USA, 2014), p. 37-72
- A. Aleksenskii, M. Bleuel, A. Bosak, A. Chumakova, A. Dideikin, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev, V. Nesvizhevsky, A. Nezvanov, R. Schweins, A. Shvidchenko, A. Strelkov, K. Turlybekuly, A. Vul', K. Zhernenkov. Nanomaterials, 11 (8), 1945 (2021). DOI: 10.3390/nano11081945
- O.V. Tomchuk, V. Ryukhtin, O. Ivankov, A.Ya. Vul', A.E. Aleksenskii, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev. Fuller. Nanotub. Carbon Nanostructures, 28 (4), 272 (2020). DOI: 10.1080/1536383X.2019.1697686
- A.V. Petrov, K.N. Semenov, I.V. Murin. Russ. J. Gen. Chem., 90 (5), 927 (2020). DOI: 10.1134/S1070363220050308
- I.I. Kulakova, G.V. Lisichkin. Russ. J. Gen. Chem., 90 (10), 1921 (2020). DOI: 10.1134/S1070363220100151
- D. Chen, H. Feng, J. Li. Chem. Rev., 112 (11), 6027 (2012). DOI: 10.1021/cr300115g
- V.N. Postnov, N.A. Melnikova, G.A. Shulmeister, A.G. Novikov, I.V. Murin, A.N. Zhukov. Russ. J. Gen. Chem., 87 (11), 2754 (2017). DOI: 10.1134/S1070363217110391
- V.T. Lebedev, Y.V. Kulvelis, A.V. Shvidchenko, O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, A.I. Kuklin, O.I. Ivankov. Membranes, 13, 850 (2023). DOI: 10.3390/membranes13110850
- V.T. Lebedev, Yu.V. Kulvelis, A.S. Odinokov, O.N. Primachenko, S.V. Kononova, E.M. Ivan'kova, V.A. Orlova, N.P. Yevlampieva, E.A. Marinenko, I.V. Gofman, A.V. Shvidchenko, G.S. Peters. J. Membr. Sci. Lett., 4 (1), 100070 (2024). DOI: 10.1016/j.memlet.2024.100070
- D.M. Sterescu, L. Bolhuis-Versteeg, N.F.A. van der Vegt, D. Stamatialis, M. Wessling. Macromol. Rapid Comm., 25 (19), 1674 (2004). DOI: 10.1002/marc.200400296
- A.F. Yazid, H. Mukhtar, R. Nasir, D.F. Mohshim. Membranes, 12 (6), 589 (2022). DOI: 10.3390/membranes12060589
- P. Kamedulski, M. Skorupska, P. Binkowski, W. Arendarska, A. Ilnicka, J.P. Lukaszewicz. Sci. Rep., 11, 22054 (2021). DOI: 10.1038/s41598-021-01154-0
- S.K. Kandasamy. In: Graphene, Nanotubes and Quantum Dots-Based Nanotechnology. Fundamentals and Applications (Woodhead Publishing Series in Electronic and Optical Materials, 2022), Ch. 8, p. 155-172. DOI: 10.1016/B978-0-323-85457-3.00024-4
- A.Ya. Vul, A.T. Dideikin, A.E. Aleksenskiy, M.V. Baidakova. In: Nanodiamond, RSC Nanoscience and Nanotechnology, ed. O.A. Williams (RSC Publishing, Cardiff, 2014)
- A.B. Yaroslavtsev, I.A. Stenina. Mendeleev Commun., 31 (4), 423 (2021). DOI: 10.1016/j.mencom.2021.07.001
- A.B. Yaroslavtsev, I.A. Stenina, D.V. Golubenko. Pure Appl. Chem., 92 (7), 1147 (2020). DOI: 10.1515/pac-2019-1208
- Z. Cui, E. Drioli, Y.M. Lee. Prog. Polym. Sci., 39 (1), 164 (2014). DOI: 10.1016/j.progpolymsci.2013.07.008
- T. Li, J. Shen, G. Chen, S. Guo, G. Xie. ACS Omega, 5 (28), 17628 (2020). DOI: 10.1021/acsomega.0c02110
- K. Schmidt-Rohr, Q. Chen. Nat. Mater., 7, 75 (2008). DOI: 10.1038/nmat2074
- A. Eisenberg. Macromolecules, 3 (2), 147 (1970). DOI: 10.1021/ma60014a006
- A. Eisenberg, B. Hird, R.B. Moore. Macromolecules, 23 (18), 4098 (1990). DOI: 10.1021/ma00220a012
- M. Fujimura, T. Hashimoto, H. Kawai. Macromolecules, 15 (1), 136 (1982). DOI: 10.1021/ma00229a028
- G. Gebel. Macromolecules, 33 (13), 4850 (2000). DOI: 10.1021/ma9912709
- A.-L. Rollet, O. Diat, G. Gebel. J. Phys. Chem. B., 106 (12), 3033 (2002). DOI: 10.1021/jp020245t
- L. Rubatat, G. Gebel, O. Diat. Macromolecules, 37 (20), 7772 (2004). DOI: 10.1021/ma049683j
- G. Gebel, O. Diat. Fuel Cells, 5 (2), 261 (2005). DOI: 10.1002/fuce.200400080
- K.-D. Kreuer. Chem. Mater., 26 (1), 361 (2014). DOI: 10.1021/cm402742u
- K.-D. Kreuer, G. Portale. Adv. Funct. Mater., 23 (43), 5390 (2013). DOI: 10.1002/adfm.201300376
- J.A. Elliott, D. Wu, S.J. Paddison, R.B. Moore. Soft Matter, 7, 6820 (2011). DOI: 10.1039/C1SM00002K
- W.S. Hummers, R.E. Offeman. J. Am. Chem. Soc., 80, 1339 (1958). DOI: 10.1021/ja01539a017
- M.K. Rabchinskii, A.D. Trofimuk, A.V. Shvidchenko, M.V. Baidakova, S.I. Pavlov, D.A. Kirilenko, Yu.V. Kulvelis, M.V. Gudkov, K.A. Shiyanova, V.S. Koval, G.S. Peters, V.T. Lebedev, V.P. Melnikov, A.T. Dideikin, P.N. Brunkov. Tech. Phys., 67 (12), 1611 (2022). DOI: 10.21883/TP.2022.12.55197.208-22
- O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, Y.V. Kulvelis, V.G. Barabanov, S.V. Kononova. J. Fluor. Chem., 244, 109736 (2021). DOI: 10.1016/j.jfluchem.2021.109736
- O.N. Primachenko, Yu.V. Kulvelis, A.S. Odinokov, N.V. Glebova, A.O. Krasnova, L.A. Antokolskiy, A.A. Nechitailov, A.V. Shvidchenko, I.V. Gofman, E.A. Marinenko, N.P. Yevlampieva, V.T. Lebedev, A.I. Kuklin. Membranes, 12 (9), 827 (2022). DOI: 10.3390/membranes12090827
- O.N. Primachenko, A.S. Odinokov, V.G. Barabanov, V.P. Tyul'mankov, E.A. Marinenko, I.V. Gofman, S.S. Ivanchev. Russ. J. Appl. Chem., 91, 101 (2018). DOI: 10.1134/S1070427218010160
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.