Ti-Cr-N coatings obtained by vacuum arc deposition as a basis for creating hybrid coatings
PosylkinaO. I.
1, Latushkina S. D.
1, Sechko I. A.
1, Vozniakovskii A. A.
2, Bogacheva E. A.
31Physical Technical Institute, National Academy of Sciences of Balarus, Minsk, Belarus
2Ioffe Institute, St. Petersburg, Russia
3Ioffe Institute, St. Petersburg, Russia
Email: ola-gapa@yandex.ru, phti@tut.by, alexey_inform@mail.ru, elizabethbogacheva@mail.ru
The results of studies of Ti-Cr-N coatings synthesized on steel substrates by vacuum-arc deposition are presented. It is established that by increasing the chromium concentration to 17 at.% it is possible to achieve an increase in microhardness up to 70% and a decrease in the friction coefficient up to 50% compared to mononitride titanium nitride coatings. The possibility of synthesis of this type of coating from cross-linked particles of few-layer graphene as the first step to create hybrid coatings is also experimentally demonstrated. Keywords: vacuum arc deposition, friction coefficient, graphene.
- V.A. Koshuro, G.G. Nechaev, A.V. Lyasnikova. Tech. Phys., 59 (10), 1570 (2014). DOI: 10.1134/S106378421410020X
- A.V. Lyasnikova, S.Y. Pichkhidze, O.A. Dudareva, O.A. Markelova. Tech. Phys., 60 (11), 1725 (2015). DOI: 10.1134/S1063784215110183
- A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, M.A. Lisovenko, O.V. Sobol', V.M. Beresnev, A.I. Kupchishin, H. Amekura, K. Kono, K. Oyoshi, Y. Takeda. Tech. Phys., 60 (8), 1176 (2015). DOI: 10.1134/S1063784215080228
- B. Fotovvati, N. Namdari, A. Dehghanghadikolaei. J. Manuf. Mater. Process., 3 (1), 28 (2019). DOI: 10.3390/jmmp3010028
- M.H. Nazari, Y. Zhang, A. Mahmoodi, G. Xu, J. Yu, J. Wu, X. Shi. Prog. Org. Coat., 162, 106573 (2022). DOI: 10.1016/j.porgcoat.2021.106573
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau. Nano Lett., 8 (3), 902 (2008). DOI: 10.1021/nl0731872
- A.R. Urade, I. Lahiri, K.S. Suresh. Jom., 75 (3), 614 (2023). DOI: 10.1007/s11837-022-05505-8
- N.A. Nebogatikova, I.V. Antnova, R.A. Soots, K.A. Kokh, E.S. Klimova, V.A. Volodin. ZhTF, 92 (4), 261 (2024). (in Russian) DOI: 10.61011/JTF.2024.02.57081.281-23
- A.B. Loginov, R.R. Ismagilov, A.N. Obraztsov, I.V. Bozhev, S.N. Bokova-Sirosh, E.D. Obraztsova, B.A. Loginov. Tech. Phys., 64 (11), 1666 (2019). DOI: 10.1134/S1063784219110185
- S.P. Lebedev, S.Iu. Priobrazhenskii, A.V. Plotnikov, M.G. Mynbaeva, A.A. Lebedev. Tech. Phys., 68 (12), 648 (2022). DOI: 10.1134/S1063784223080169
- S.P. Lebedev, I.S. Barash, I.A. Eliseyev, P.A. Dementev, A.A. Lebedev, P.V. Bulat. Tech. Phys., 64 (12), 1843 (2019). DOI: 10.1134/S1063784219120144
- O. Kwon, Y. Choi, E. Choi, M. Kim, Y.C. Woo, D.W. Kim. Nanomaterials, 11 (3), 757 (2021). DOI: 10.3390/nano11030757
- X. Gu, Y. Zhao, K. Sun, C.L. Vieira, Z. Jia, C. Cui, Z. Wang, A. Walsh, S. Huang. Ultrason. Sonochem., 58, 104630 (2019). DOI: 10.1016/j.ultsonch.2019.104630
- Nanotechnologies --- Structural characterization of graphene --- Part 1: Graphene from powders and dispersions ISO/TS 21356-1
- A.P. Voznyakovskii, A.A. Vozniakovskii, S.V. Kidalov. Nanomaterials, 12 (4), 657 (2022). DOI: 10.3390/nano12040657
- A.P. Voznyakovskii, A.A. Neverovskaya, A.A. Vozniakovskii, S.V. Kidalov. Nanomaterials, 12 (5), 883 (2022). DOI: 10.3390/nano12050883
- S.V. Nesterov. Vliyanie fenolnykh soedinenii na protsess obrazovaniya poliuretanov i ikh termicheskuiyu stabilnost (Avtoref. diss., 2013)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.