High-frequency magnetron sputtering and morphological properties of carbon nanowalls
Vinogradov A. Ya. 1, Grudinkin S. A. 1, Baranov M. A.2, Levitskii V. S.3
1Ioffe Institute, St. Petersburg, Russia
2International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
3R&D Center of Thin Film Technologies in Energetics, Saint-Petersburg, Russia
Email: vingrdov@gmail.com, grudink.gvg@mail.ioffe.ru, mbaranov@mail.ru, lev-vladimir@yandex.ru

PDF
Carbon nanowalls, which are three-dimensional structures made of graphene layers arranged perpendicularly to the substrate surface, were obtained on crystalline silicon substrates using high-frequency magnetron sputtering of a graphite target without the addition of reactive gases to the working mixture. The effect of the deposition process technology on the morphology characteristics of carbon nanowalls and their evolution over growth time was investigated by means of electron microscopy. The structural properties and defects of carbon nanosheets was studied using the method of Raman scattering. The influence of high-frequency energy and argon pressure in the reactor on the content of point and linear structural defects in carbon nanowalls is shown. Keywords: ion plasma deposition, carbon nanostructures, scanning electron microscopy, Raman light scattering.
  1. X. Zhao, H. Tian, M. Zhu, K. Tian, J.J. Wang, F. Kang, R.A. Outlaw. J. Power Sourc., 194 (2), 1208 (2009). DOI: 10.1016/j.jpowsour.2009.06.004
  2. Y.H. Wu, T. Yu, Z.X. Shen. J. Appl. Phys., 108, 071301 (2010). DOI: 101063/1.3460809
  3. R. Vansweevelt, A. Malesevic, M. Van Gompel, A. Vanhulsel, S. Wenmackers, J. D'Haen. Chem. Phys. Lett., 485, 196 (2010). DOI: 10.1016/j.cplett.2009.12.040
  4. D.A. Chernodubov, Yu.V. Bondareva, M.V. Shibalov, A.M. Mumlyakov, V.L. Zhdanov, M.A. Tarkhov, K.I. Maslakov, N.V. Suetin, D.G. Kvashnin, S.A. Evlashin. JETP Lett., 117 (6), 449 (2023). DOI: 10.1134/s0021364023600313
  5. A.I. Podlivaev, K.S. Grishakov, K.P. Katin, M.M. Maslov. JETP Lett., 114, 143 (2021). DOI: 10.1134/S0021364021150078
  6. H.J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, M. Hori. Carbon, 68, 380 (2014). DOI: 10.1016/j.carbon.2013.11.014
  7. L. Cui, J. Chen, B. Yang, D. Sun, T. Jiao. Appl. Surf. Sci., 357, 1 (2015). DOI: 10.1016/j.apsusc.2015.08.252
  8. K. Bystrova, M.C.M. van de Sanden, C. Arnas, L. Marot, D. Mathys, F. Liu, L.K. Xu, X.B. Li, A.V. Shalpegin, G. De Temmerman. Carbon, 68, 695 (2014). DOI: 10.1016/j.carbon.2013.11.051
  9. S. Seiji, H. Yuichi, T. Masanori, I. Takashi, N. Shuichi. Jpn. J. Appl. Phys., 47, 8635 (2008). DOI: 10.1143/JJAP.47.8635
  10. J. Yang, Q. Yang, Y. Zhang, X. Wei, H. Shi. RSC Adv., 13 (33), 22838 (2023). DOI: 10.1039/d3ra03104g
  11. A.M. Mumlyakov, E.A. Pershina, A.A. Shibalova, M.V. Shibalov, Yu.V. Anufriev, I.A. Filippov, V. Sen', M.A. Tarkhov. St. Petersburg State Polytech. Univ. J.: Phys. Math., 16, 211 (2023). DOI: 10.18721/JPM.163.236
  12. Y. Yerlanuly, D. Christy, N. Van Nong, H. Kondo, B. Alpysbayeva, R. Nemkayeva, M. Kadyr, T. Ramazanov, M. Gabdullin, D. Batryshev, M. Hori. Appl. Surf. Sci., 523, 146533 (2020). DOI: 10.1016/j.apsusc.2020.146533
  13. S.A. Grudinkin, A.Ya. Vinogradov. J. Phys.: Conf. Series, 1697, 012108 (2020). DOI: 10.1088/1742-6596/1697/1/012108
  14. F. Guzman-Olivos, R. Espinoza-Gonzalez, V. Fuenzalida. Mater. Lett., 167, 242 (2016). DOI: 10.1016/j.matlet.2016.01.016
  15. E.S. Tuzemen, M. Kilic, B.K. Zeyrek, A.E. Kasapoglu, E. Gur, B.O. Alaydin, M. Esen, R. Esen. Diam. Relat. Mater., 93, 200 (2019). DOI: 10.1016/j.diamond.2019.02.007
  16. T. Itoh. Thin Solid Films, 519, 4589 (2011). DOI: 10.1016/j.tsf.2011.01.308
  17. W. Zheng, X. Zhao, W. Fa. Appl. Mater. Interfaces, 13, 9561 (2021). DOI: 10.1021/acsami.0c19188
  18. V.A. Krivchenko, V.V. Dvorkin, N.N. Dzbanovsky, M.A. Timofeyev, A.S. Stepanov, A.T. Rakhimov, N.V. Suetin, O.Yu. Vilkov, L.V. Yashina. Carbon, 50, 1477 (2012). DOI: 10.1016/j.carbon.2011.11.018
  19. W. Fu, X. Zhao, W. Zheng. Carbon, 173, 91 (2021). DOI: 10.1016/j.carbon.2020.10.072
  20. A.C. Ferrari, D.M. Basko. Nature Nanotech., 8 (4), 235 (2013). DOI: 10.1038/nnano.2013.46
  21. L.G. Can cado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M.A. Pimenta. Appl. Phys. Lett., 88 (16), 163106 (2006). DOI: 10.1063/1.2196057
  22. L.G. Can cado, M.G. Da Silva, E.H.M. Ferreira, F. Hof, K. Kampioti, K. Huang, A. Penicaud, C.A. Achete, R.B. Capaz, A. Jorio. 2D Materials, 4 (2), 025039 (2017). DOI: 10.1088/2053-1583/aa5e77
  23. E. Bertran-Serra, A. Musheghyan-Avetisyan, S. Chaitoglou, R. Amade-Rovira, I. Alshaikh, F. Pantoja-Suarez, J.-L. Andujar-Bella, T. Jawhari, A. Perez-del-Pino, E. Gyorgy. Appl. Surf. Sci., 610, 155530 (2023). DOI: 10.1016/j.apsusc.2022.155530
  24. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T. Thong. Small, 6 (2), 195 (2010). DOI: 10.1002/smll.200901173
  25. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi. Nano Lett., 12 (8), 3925 (2012). DOI: 10.1021/nl300901a

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru