High-frequency magnetron sputtering and morphological properties of carbon nanowalls
Vinogradov A. Ya. 1, Grudinkin S. A.
1, Baranov M. A.2, Levitskii V. S.3
1Ioffe Institute, St. Petersburg, Russia
2International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
3R&D Center of Thin Film Technologies in Energetics, Saint-Petersburg, Russia
Email: vingrdov@gmail.com, grudink.gvg@mail.ioffe.ru, mbaranov@mail.ru, lev-vladimir@yandex.ru
Carbon nanowalls, which are three-dimensional structures made of graphene layers arranged perpendicularly to the substrate surface, were obtained on crystalline silicon substrates using high-frequency magnetron sputtering of a graphite target without the addition of reactive gases to the working mixture. The effect of the deposition process technology on the morphology characteristics of carbon nanowalls and their evolution over growth time was investigated by means of electron microscopy. The structural properties and defects of carbon nanosheets was studied using the method of Raman scattering. The influence of high-frequency energy and argon pressure in the reactor on the content of point and linear structural defects in carbon nanowalls is shown. Keywords: ion plasma deposition, carbon nanostructures, scanning electron microscopy, Raman light scattering.
- X. Zhao, H. Tian, M. Zhu, K. Tian, J.J. Wang, F. Kang, R.A. Outlaw. J. Power Sourc., 194 (2), 1208 (2009). DOI: 10.1016/j.jpowsour.2009.06.004
- Y.H. Wu, T. Yu, Z.X. Shen. J. Appl. Phys., 108, 071301 (2010). DOI: 101063/1.3460809
- R. Vansweevelt, A. Malesevic, M. Van Gompel, A. Vanhulsel, S. Wenmackers, J. D'Haen. Chem. Phys. Lett., 485, 196 (2010). DOI: 10.1016/j.cplett.2009.12.040
- D.A. Chernodubov, Yu.V. Bondareva, M.V. Shibalov, A.M. Mumlyakov, V.L. Zhdanov, M.A. Tarkhov, K.I. Maslakov, N.V. Suetin, D.G. Kvashnin, S.A. Evlashin. JETP Lett., 117 (6), 449 (2023). DOI: 10.1134/s0021364023600313
- A.I. Podlivaev, K.S. Grishakov, K.P. Katin, M.M. Maslov. JETP Lett., 114, 143 (2021). DOI: 10.1134/S0021364021150078
- H.J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, M. Hori. Carbon, 68, 380 (2014). DOI: 10.1016/j.carbon.2013.11.014
- L. Cui, J. Chen, B. Yang, D. Sun, T. Jiao. Appl. Surf. Sci., 357, 1 (2015). DOI: 10.1016/j.apsusc.2015.08.252
- K. Bystrova, M.C.M. van de Sanden, C. Arnas, L. Marot, D. Mathys, F. Liu, L.K. Xu, X.B. Li, A.V. Shalpegin, G. De Temmerman. Carbon, 68, 695 (2014). DOI: 10.1016/j.carbon.2013.11.051
- S. Seiji, H. Yuichi, T. Masanori, I. Takashi, N. Shuichi. Jpn. J. Appl. Phys., 47, 8635 (2008). DOI: 10.1143/JJAP.47.8635
- J. Yang, Q. Yang, Y. Zhang, X. Wei, H. Shi. RSC Adv., 13 (33), 22838 (2023). DOI: 10.1039/d3ra03104g
- A.M. Mumlyakov, E.A. Pershina, A.A. Shibalova, M.V. Shibalov, Yu.V. Anufriev, I.A. Filippov, V. Sen', M.A. Tarkhov. St. Petersburg State Polytech. Univ. J.: Phys. Math., 16, 211 (2023). DOI: 10.18721/JPM.163.236
- Y. Yerlanuly, D. Christy, N. Van Nong, H. Kondo, B. Alpysbayeva, R. Nemkayeva, M. Kadyr, T. Ramazanov, M. Gabdullin, D. Batryshev, M. Hori. Appl. Surf. Sci., 523, 146533 (2020). DOI: 10.1016/j.apsusc.2020.146533
- S.A. Grudinkin, A.Ya. Vinogradov. J. Phys.: Conf. Series, 1697, 012108 (2020). DOI: 10.1088/1742-6596/1697/1/012108
- F. Guzman-Olivos, R. Espinoza-Gonzalez, V. Fuenzalida. Mater. Lett., 167, 242 (2016). DOI: 10.1016/j.matlet.2016.01.016
- E.S. Tuzemen, M. Kilic, B.K. Zeyrek, A.E. Kasapoglu, E. Gur, B.O. Alaydin, M. Esen, R. Esen. Diam. Relat. Mater., 93, 200 (2019). DOI: 10.1016/j.diamond.2019.02.007
- T. Itoh. Thin Solid Films, 519, 4589 (2011). DOI: 10.1016/j.tsf.2011.01.308
- W. Zheng, X. Zhao, W. Fa. Appl. Mater. Interfaces, 13, 9561 (2021). DOI: 10.1021/acsami.0c19188
- V.A. Krivchenko, V.V. Dvorkin, N.N. Dzbanovsky, M.A. Timofeyev, A.S. Stepanov, A.T. Rakhimov, N.V. Suetin, O.Yu. Vilkov, L.V. Yashina. Carbon, 50, 1477 (2012). DOI: 10.1016/j.carbon.2011.11.018
- W. Fu, X. Zhao, W. Zheng. Carbon, 173, 91 (2021). DOI: 10.1016/j.carbon.2020.10.072
- A.C. Ferrari, D.M. Basko. Nature Nanotech., 8 (4), 235 (2013). DOI: 10.1038/nnano.2013.46
- L.G. Can cado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M.A. Pimenta. Appl. Phys. Lett., 88 (16), 163106 (2006). DOI: 10.1063/1.2196057
- L.G. Can cado, M.G. Da Silva, E.H.M. Ferreira, F. Hof, K. Kampioti, K. Huang, A. Penicaud, C.A. Achete, R.B. Capaz, A. Jorio. 2D Materials, 4 (2), 025039 (2017). DOI: 10.1088/2053-1583/aa5e77
- E. Bertran-Serra, A. Musheghyan-Avetisyan, S. Chaitoglou, R. Amade-Rovira, I. Alshaikh, F. Pantoja-Suarez, J.-L. Andujar-Bella, T. Jawhari, A. Perez-del-Pino, E. Gyorgy. Appl. Surf. Sci., 610, 155530 (2023). DOI: 10.1016/j.apsusc.2022.155530
- Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T. Thong. Small, 6 (2), 195 (2010). DOI: 10.1002/smll.200901173
- A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi. Nano Lett., 12 (8), 3925 (2012). DOI: 10.1021/nl300901a
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.