Thermophysical properties of aqueous nanofluids modified with carbon nanostructures
Vozniakovskii A. A. 1, Voznyakovskii A.P. 2, Kalashnikova E. I. 1, Kidalov S. V. 1, Eidelman E. D. 1
1Ioffe Institute, St. Petersburg, Russia
2S.V. Lebedev research Institute for Synthetic Rubber, Saint-Petersburg, Russia
Email: alexey_inform@mail.ru, voznap@mail.ru, kalashnikatja@bk.ru, Kidalov@mail.ioffe.ru, eidelman@mail.ioffe.ru

PDF
The results of the study of thermal conductivity and viscosity of water-based nanofluids modified with commercial detonation nanodiamond (DND) purified under self-propagating high-temperature synthesis conditions are presented, which made it possible to obtain a dispersion of up to 90 nm. Also, using this purification technique, it became possible to obtain stable nanofluids based on DND with a content of up to 1 vol.%, as well as to get an increase in thermal conductivity of up to 26% at 55oC, but the addition of DND led to an increase in the viscosity of the final nanofluid to 62%. The experimental data were compared with theoretical calculations using models to establish the most important parameters for obtaining high thermal conductivity. Another carbon nanomaterial, few-layer graphene, which has a thermal conductivity similar to DND, was also compared. Keywords: nanofluid, nanodiamond, self-propagating high-temperature synthesis, viscosity, thermal conductivity.
  1. B.T. Branson, P.S. Beauchamp, J.C. Beam, C.M. Lukehart, J.L. Davidson. Acs Nano, 7 (4), 3183 (2013). DOI: 10.1021/nn305664x
  2. L.O. Usoltseva, M.V. Korobov, M.A. Proskurnin. J. Appl. Phys., 128 (19), 190901 (2020). DOI: 10.1063/5.0024332
  3. L.S. Sundar, M.J. Hortiguela, M.K. Singh, A.C Sousa. Int. Commun. Heat Mass Transfer, 76, 245 (2016). DOI: 10.1016/j.icheatmasstransfer.2016.05.025
  4. M. Yeganeh, N. Shahtahmasebi, A.H.M.A.D. Kompany, E.K. Goharshadi, A. Youssefi, L. vSiller. Int. Commun. Heat Mass Transfer, 53 (15), 3186 (2010). DOI: 10.1016/j.ijheatmasstransfer.2010.03.008
  5. F. Mashali, E. Languri, G. Mirshekari, J. Davidson, D. Kerns. Int. Commun. Heat Mass Transfer, 101, 82 (2019). DOI: 10.1016/j.icheatmasstransfer.2019.01.007
  6. Z. Said, L.S. Sundar, H. Rezk, A.M. Nassef, S. Chakraborty, C. Li. J. Mol. Liq., 330, 115659 (2021). DOI: 10.1016/j.molliq.2021.115659
  7. F. Mashali, E.M. Languri, J. Davidson, D. Kerns, W. Johnson, K. Nawaz, G. Cunningham. Int. J. Heat Mass Transfer, 129, 1123 (2019). DOI: 10.1016/j.ijheatmasstransfer.2018.10.033
  8. Yu. Dolmatov. Russ. Chem. Rev., 76 (4), 339 (2007). DOI: 10.1070/RC2007v076n04ABEH003643
  9. V.Y. Dolmatov, A.N. Ozerin, I.I. Kulakova, O.O. Bochechka, N.M. Lapchuk, V. Myllymaki, A. Vehanen. Russ. Chem. Rev., 89 (12), 1428 (2020). DOI: 10.1070/RCR4924
  10. A.V. Shvidchenko, A.N. Zhukov, A.T. Dideikin, M.V. Baidakova, M.S. Shestakov, V.V. Shnitov, A.Y. Vul'. Colloid J., 78 (2), 235 (2016). DOI: 10.1134/S1061933X16020149
  11. A.P. Voznyakovskii, A.A. Vozniakovskii, S.V. Kidalov. Nanomater., 12 (4), 657 (2022). DOI: 10.3390/nano12040657
  12. A.P. Voznyakovskii, A.A. Neverovskaya, A.A. Vozniakovskii, S.V. Kidalov. Nanomater., 12 (5), 883 (2022). DOI: 10.3390/nano12050883
  13. R.J. Warzoha, A.S. Fleischer. Int. J. Heat Mass Transfer, 71, 779 (2014). DOI: 10.1016/j.ijheatmasstransfer.2013.10.064
  14. R.J. Warzoha, A.S. Fleischer. Int. J. Heat Mass Transfer, 71, 790 (2014). DOI: 10.1016/j.ijheatmasstransfer.2013.10.062
  15. A.A. Vozniakovskii, T.S. Kol'tsova, A.P. Voznyakovskii, A.L. Kumskov, S.V. Kidalov. J. Colloid Interface Sci., 565, 305 (2020). DOI: 10.1016/j.jcis.2020.01.034
  16. A.E. Aleksenskiy, E.D. Eydelman, A.Ya. Vul. Nanosci. Nanotechnol. Lett., 3 (1), 68 (2011). DOI: 10.1166/nnl.2011.1122
  17. M.T. Sebastian, H. Jantunen. Intern. J. Appl. Ceramic Technol., 7 (4), 415 (2010). DOI: 10.1111/j.1744-7402.2009.02482.x
  18. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau. Nano Lett., 8 (3), 902 (2008). DOI: 10.1021/nl0731872

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru