Sorption properties of a magnetically sensitive composite based on few-layer graphene towards methylene blue
Vozniakovskii A. A.
1, Bogacheva E. A.
2, PodlozhnyukN. D.
1, Voznyakovskii A.P.
3, Kidalov S. V.
11Ioffe Institute, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3S.V. Lebedev research Institute for Synthetic Rubber, Saint-Petersburg, Russia
Email: alexey_inform@mail.ru, elizabethbogacheva@mail.ru, podloznuknikita@gmail.com, voznap@mail.ru, Kidalov@mail.ioffe.ru
A method for modifying few-layer graphene particles obtained under self-propagating high-temperature synthesis with magnetic particles by synthesizing magnetite by chemical condensation has been developed. The efficiency of such a composite as a sorbent for water purification from methylene blue was studied. It has been established that the obtained magnetic composite, although inferior in sorption efficiency to the original particles of few-layer graphene, is highly sensitive to the effects of an external magnetic field, which makes it easy to remove it from water along with the sorbed pollutant. Keywords: few-layer graphene, magnetite, purification, sorption.
- A. Arabpour, S. Dan, H. Hashemipour. Arabian J. Chem., 14 (3), 103003 (2021). DOI: 10.1016/j.arabjc.2021.103003
- K. Zhang, S. Yu, B. Jv, W. Zheng. Phys. Chem. Chem. Phys., 18 (41), 28418 (2016). DOI: 10.1039/C6CP03987A
- A.P. Voznyakovskii, A.P. Karmanov, L.S. Kocheva, A.Yu. Neverovskaya, A.A. Vozniakovskii, A.V. Kanarskii, E.I. Semenov, S.V. Kidalov. Tech. Phys., 68 (7), 132 (2023). DOI: 10.1134/S1063784223090165
- I.A. Eliseev, E.A. Gushchina, S.A. Klotchenko, A.A. Lebedev, N.M. Lebedeva, S.P. Lebedev, A.V. Nashchekin, V.N. Petrov, M.V. Puzyk, A.D. Roenkov, A.N. Smirnov, E.M. Tanklevskaya, A.S. Usikov, E.I. Shabunina, N.M. Schmidt. Tech. Phys., 57 (12), 524 (2022). DOI: 10.1134/S1063782623080031
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff. Adv. Mater., 22 (35), 3906 (2010). DOI: 10.1002/adma.201001068
- V.N. Postnov, O.V. Rodinkov, L.N. Moskvin, A.G. Novikov, A.S. Bugaichenko, O.A. Krokhina. Russ. Chem. Rev., 85 (2), 115 (2016). DOI: 10.1070/RCR4551
- X. Gu, Y. Zhao, K. Sun, C.L. Vieira, Z. Jia, C. Cui, Z. Wang, A. Walsh, S. Huang. Ultrason. Sonochem., 58, 104630 (2019). DOI: 10.1016/j.ultsonch.2019.104630
- A. Mahrouz, S. Farzaneh. Microchim. Acta, 183, 1749 (2016). DOI: 10.1007/s00604-016-1805-8
- W. Tieshi, L. Zhaohong, L. Mingming, W. Bo, O.J. Qiuyun. Appl. Phys., 8, 024314 (2013). DOI: 10.1063/1.4774243
- Y. Yunjin, M. Shiding, L. Shizhen, M. Li Ping, S. Hongqi, W. Shaobin. Chem. Eng. J., 184, 326 (2012). DOI: 10.1016/j.cej.2011.12.017
- K. Rakesh, B. Sayan, S.J. Prabhakar. Environ. Chem. Eng., 9 (5), 16 (2021). DOI: 10.1016/j.jece.2021.106212
- S. Xiaosan, Z. Jie, F. Jishuo, Z. Qianqian, W. Sanfan. Mater. Res. Express, 9 (2), 020002 (2022). DOI: 10.1088/2053-1591/ac52c6
- T.V. Bukreeva, O.A. Orlova, S.N. Sulyanov, Y.V. Grigoriev, P.V. Dorovatovskiy. Crystall. Rep., 56 (5), 880 (2011). DOI: 10.1134/S1063774511050051
- L.Kh. Komissarova, V.I. Filippov. J. Magn. Magn. Mater., 225, 197 (2001). DOI: 10.1016/S0304-8853(00)01258-0
- G.G. Tatishvili, M.G. Akhalaya, Z.A. Zurabashvili. Vestnik khirurgii, 4, 37 (1989) (in Russian)
- A.P. Voznyakovskii, A.A. Vozniakovskii, S.V. Kidalov. Nanomater., 12 (4), 657 (2022). DOI: 10.3390/nano12040657
- A.P. Voznyakovskii, A.Yu. Neverovskaya, A.A. Vozniakovskii, S.V. Kidalov. Nanomater., 12 (5), 883 (2022). DOI: 10.3390/nano12050883
- N.D. Podlozhnyuk, A.A. Vozniakovskii, A.P. Voznyakovskii, S.V. Kidalov, E.A. Bogacheva. Russ J. Appl. Chem., 96 (2), 198 (2023). DOI: 10.1134/S1070427223020107
- J. Nusrat, R. Hridoy, H. Akter. Case Stud. Chem. Environ. Eng., 6 (10), 100239 (2022). DOI: 10.1016/j.cscee.2022.100239
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.