Generation of highly ionized metallic plasma by anodic evaporation in a pulsed discharge
Gavrilov N. V. 1,2, Emlin D. R. 1, Kamenetskikh A. S. 1,2
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: gavrilov@iep.uran.ru, erd@iep.uran.ru, alx@iep.uran.ru

PDF
The influence of the parameters of a pulse-periodic (1 ms, 60-450 Hz) discharge with a self-heating hollow cathode and an evaporated anode on the density and degree of ionization of the aluminum vapor stream is studied. It is shown that an increase in the current amplitude at a constant average discharge current of 12-16 A leads to a 3-4-fold increase in the film deposition rate, an increase in the proportion of Al+ ions in the vapor stream to 100% at 80 A and increase of the proportion of Al+ ions in the total ion current to 30% at 110 A. A method for determining the proportion of metal ions in a vapor stream by a grid probe with a retarding electrostatic field has been improved Keywords: self-heating cathode, pulse discharge, anodic evaporation, degree of vapor ionization.
  1. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films, 513, 1 (2006). DOI: 10.1016/j.tsf.2006.03.033
  2. M. Yamashita, J. Vac. Sci. Technol. A, 7, 151 (1989). DOI: 10.1116/1.575744
  3. S.M. Rossnagel, J. Hopwood, Appl. Phys. Lett., 63 (24), 3285 (1993). DOI: 10.1063/1.110176
  4. K. Macak, V. Kouznetsov, J. Schneider, U. Helmersson, I. Petrov, J. Vac. Sci. Technol. A, 18, 1533 (2000). DOI: 10.1116/1.582380
  5. H. Ehrich, B. Hasse, M. Mausbach, K.G. Muller, J. Vac. Sci. Technol. A, 8, 2160 (1990). DOI: 10.1116/1.577033
  6. M.M. Nikitin, Bull. Russ. Acad. Sci. Phys., 74 (2), 285 (2010). DOI: 10.3103/S1062873810020383
  7. H. Morgner, M. Neumann, S. Straach, M. Krug, Surf. Coat. Technol., 108-109, 513 (1998). DOI: 10.1016/S0257-8972(98)00633-1
  8. V.S. Cherednichenko, B.I. Yudin, Vakumnye plazmennye elektropechi (INFRA-M, M., 2022). (in Russian)
  9. N.V. Gavrilov, A.S. Kamenetskikh, D.R. Emlin, P.V. Tretnikov, A.V. Chukin, Tech. Phys., 64 (6), 807 (2019). DOI: 10.1134/S1063784219060082
  10. A.V. Tyunkov, A.A. Andronov, E.M. Oks, Yu.G. Yushkov, D.B. Zolotukhin, Vacuum, 208, 111722 (2023). DOI: 10.1016/j.vacuum.2022.111722
  11. N.V. Gavrilov, D.R. Emlin, Tech. Phys., 62 (11), 1750 (2017). DOI: 10.1134/S1063784217110081
  12. W. Hartmann, V. Dominic, G.F. Kirkman, M.A. Gundersen, Appl. Phys., 65, 4388 (1989). DOI: 10.1063/1.343430
  13. R.E. Honig, RCA Rev., 18, 195 (1957)
  14. V.M. Nerovnyi, A.D. Khakhalev, J. Phys. D, 41, 035201 (2008). DOI: 10.1088/0022-3727/41/3/035201
  15. M.V. Nezlin. Dinamika puchkov v plazme (Energoizdat, M., 1982) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru