Optimization of electrochemical etching parameters improves the quality factor of porous silicon microcavities
Granizo E. A. 1, Kriukova I. S. 1,2, Nabiev I. R.1,2, Samokhvalov P. S. 1,2
1Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
2Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
Email: aleroman16@hotmail.com, i.krukova@lift.center, igor.nabiev@univ-reims.fr, p.samokhvalov@gmail.com

PDF
Porous silicon is a promising and versatile material for modern technologies with a wide range of potential applications. Here we demonstrate a two-fold increase in the quality factor of porous silicon microcavities by gradient change of electrochemical etching times for each layer of microcavity, which compensates for the gradual decrease in the etching rate during sample fabrication. The results of this work will improve the performance of nanophotonic devices based on porous silicon for applications in optical communications and sensors for diagnostics and environmental monitoring. Keywords: porous silicon, porosity, etching rate, electrochemical etching, quality factor.
  1. R. Vercauteren, G. Scheen, J.-P. Raskin, L.A. Francis, Sensors Actuators A, 318, 112486 (2021). DOI: 10.1016/j.sna.2020.112486
  2. D.S. Dovzhenko, I.L. Martynov, I.S. Kryukova, A.A. Chistyakov, I.R. Nabiev, Opt. Spectrosc., 122 (1), 79 (2017). DOI: 10.1134/S0030400X17010064
  3. I. Kriukova, P. Samokhvalov, I. Nabiev, Appl. Nanosci., 12 (11), 3315 (2022). DOI: 10.1007/s13204-021-02055-4
  4. M. Duris, M. Guendouz, N. Lorrain, P. Pirasteh, L. Bodiou, W. Raiah, Y. Coffinier, V. Thomy, J. Charrier, Opt. Mater. Express, 10 (8), 1921 (2020). DOI: 10.1364/OME.396343
  5. M. Gryga, D. Ciprian, P. Hlubina, Sensors, 22 (10), 3627 (2022). DOI: 10.3390/s22103627
  6. Z. Chen, V. Robbiano, G.M. Paterno, G. Carnicella, A. Debrassi, A.A. La Mattina, S. Mariani, A. Minotto, G. Egri, L. Dahne, F. Cacialli, G. Barillaro, Adv. Opt. Mater., 9 (20), 2100036 (2021). DOI: 10.1002/adom.202100036
  7. D. Dovzhenko, I. Martynov, P. Samokhvalov, E. Osipov, M. Lednev, A. Chistyakov, A. Karaulov, I. Nabiev, Opt. Express, 28 (15), 22705 (2020). DOI: 10.1364/OE.401197
  8. P. Lova, H. Megahd, P. Stagnaro, M. Alloisio, M. Patrini, D. Comoretto, Appl. Sci., 10 (12), 4122 (2020). DOI: 10.3390/app10124122
  9. I.E. Shaaban, A.S. Samra, S. Muhammad, S. Wageh, Energies, 15 (3), 1237 (2022). DOI: 10.3390/en15031237
  10. T.S.T. Amran, M.R. Hashim, N.K. Ali, H. Yazid, R. Adnan, Physica B, 407 (23), 4540 (2012). DOI: 10.1016/j.physb.2012.08.008

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru