Bodunov E. N.
1
1Emperor Alexander I St. Petersburg State Transport University, St. Petersburg, Russia
Email: evgeny.bodunov@inbox.ru
The kinetics of luminescence decay of nanocrystals (NCs) contains important information about the excited states of the NCs, the type and number of traps of charge carriers (electrons, holes) or excitation-energy acceptors (molecules, other NCs), the trap energy distribution, and the mechanism of electron excitation-energy transfer from NCs to acceptors. Usually, the kinetics of NC luminescence decay is non-exponential and can be approximated with good accuracy by the sum of two or three exponentials. In recent years, it has been experimentally observed that after pulsed excitation, the luminescence intensity of an ensemble of NCs decreases at large times according to a power law. To explain this regularity, a new model of the NC ensemble and a corresponding new function for fitting the kinetics of luminescence decay are proposed. This function is obtained on the basis of the balance equations and assuming an exponential distribution of traps by energies and reversible return of charge carriers from the traps to the NCs. Fitting experimental data with the proposed function allows to estimate the trapping rate of charge carriers and the parameters of the trap energy distribution function. Keywords: nanocrystals, luminescence decay kinetics, delayed luminescence.
- R. Koole, B. Luigjes, M. Tachiya, R. Pool, T.J.H. Vlugt, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh. J. Phys. Chem. C, 111, 11208 (2007). DOI: 10.1021/jp072407x
- S. Sadhu, M. Tachiya, A. Patra. J. Phys. Chem. C, 113 (45), 19488 (2009). DOI: 10.1021/jp906160z
- E.N. Bodunov, V.V. Danilov, A.S. Panfutova, A.L. Simoes Gamboa. Ann. Phys., 528, 272 (2016). DOI: 10.1002/andp.201500350
- E.N. Bodunov, Yu.A. Antonov, A.L. Simoes Gamboa. J. Chem. Phys., 146, 114102 (2017). DOI: 10.1063/1.4978396
- E.N. Bodunov, A.L. Simoes Gamboa. J. Phys. Chem. C, 122, 10637 (2018). DOI: 10.1021/acs.jpcc.8b02779
- E.N. Bodunov, A.L. Simoes Gamboa. Semiconductors, 52 (5), 587 (2018). DOI: 10.1134/S1063782618050044
- E.N. Bodunov, A.L. Simoes Gamboa. J. Phys. Chem. C, 123, 25515 (2019). DOI: 10.1021/acs.jpcc.9b07619
- E.N. Bodunov, A.L. Simoes Gamboa. Semiconductors, 53 (16), 2133 (2019). DOI: 10.1134/S1063782619120078
- A.L. Simoes Gamboa, E.N. Bodunov. In: 2022 International Conference Laser Optics ( ICLO) (IEEE, 2022). DOI: 10.1109/ICLO54117.2022.9839822
- A. Sahu, D. Kumar. J. Alloys and Compounds, 924, 166508 (2022). DOI: 10.1016/j.jallcom.2022.166508
- J.R. Martins, V. Krivenkov, C.R. Bernardo, P. Samokhvalov, I. Nabiev, Yu.P. Rakovich, M.I. Vasilevskiy. J. Phys. Chem. C, 126 (48), 20480--20490 (2022). DOI: 10.1021/acs.jpcc.2c06134
- J. Xiao, Y. Liu, V. Steinmetz, M. Caglar, J. Mc Hugh, T. Baikie, N. Gauriot, M. Nguyen, E. Ruggeri, Z. Andaji-Garmaroudi, S.D. Stranks, L. Legrand, T. Barisien, R.H. Friend, N.C. Greenham, A. Rao, R. Pandya. ACS Nano, 14, 14740 (2020). DOI: 10.1021/acsnano.0c01752
- O. Stroyuk, A. Raevskaya, F. Spranger, N. Gaponik, D.R.T. Zahn. Chem. Phys. Chem., 20 (12), 1640 (2019). DOI: 10.1002/cphc.201900088
- A.S. Kulagina, A.I. Khrebtov, R.R. Reznik, E.V. Ubyivovk, A.P. Litvin, I.D. Skurlov, G.E. Cirlin, E.N. Bodunov, V.V. Danilov. Opt. Spectrosc., 128 (1), 119 (2020). DOI: 10.1134/S0030400X20010129
- H. Leng, J. Loy, V. Amin, E.A. Weiss, M. Pelton. ACS Energy Lett., 1, 9 (2016). DOI: 10.1021/acsenergylett.6b00047
- Li Liu, Keliang Pan, Ke Xu, Jin Z. Zhang. ACS Phys. Chem. Au, 2, 156--170 (2022). DOI: 10.1021/acsphyschemau.1c00047
- Zitao Zhao, Qian Wang, Fei Gao, Donghui Luo, Yan Zhang, Huan Liu. AIP Advances, 14, 105115 (2024). DOI: 10.1063/5.0228028
- A.A. Rempel, O.V. Ovchinnikov, I.A. Weinstein, S.V. Rempel, u.V. Kuznetsova, A.V. Naumov, M.S. Smirnov, I.Yu. Eremchev, A.S. Vokhmintsev, S.S. Savchenko. Russ. Chem. Rev., 93 (4), RCR5114 (2024). DOI: 10.59761/RCR5114
- I.G. Grevtseva, O.V. Ovchinnikov, M.S. Smirnov, K.S. Chirkov, A.N. Latyshev. Opt. i spektr., 132 (6), 675--682 (2024) (in Russian). DOI: 10.61011/OS.2024.06.58646.6194-24
- E.N. Bodunov. Opt. Spectrosc., 131 (1), 96--99 (2023). DOI: 10.21883/EOS.2023.01.55524.91-22
- P.H. Sher, J.M. Smith, P.A. Dalgarno, R.J. Warburton, X. Chen, P.J. Dobson, S.M. Daniels, N.L. Pickett, P. O'Brien. Appl. Phys. Lett., 92, 101111 (2004). DOI: 10.1063/1.2894193
- F.T. Rabouw, M. Kamp, R.J. van Dijk-Moes, D.R. Gamelin, A.F. Koenderink, A. Meijerink, D. Vanmaekelbergh. Nano Lett., 15, 7718--7725 (2015). DOI: 10.1021/acs.nanolett.5b03818
- F.T. Rabouw, J.C. van der Bok, P. Spinicelli, B. Mahler, M. Nasilowski, S. Pedetti, B. Dubertret, D. Vanmaekelbergh. Nano Lett., 16, 2047--2053 (2016). DOI: 10.1021/acs.nanolett.6b00053
- F. Montanarella, M. Biondi, S.O.M. Hinterding, D. Vanmaekelbergh, F.T. Rabouw. Nano Lett., 18, 5867--5874 (2018). DOI: 10.1021/acs.nanolett.8b02538
- Al.L. Efros. Phys. Rev. B, 46, 7448--7458 (1992). DOI: 10.1103/PhysRevB.46.7448
- O. Labeau, P. Tamarat, B. Lounis. Phys. Rev. Lett., 90 (25), 257404(4) (2023). DOI: 10.1103/PhysRevLett.90.257404
- V.I. Klimov. J. Phys. Chem. B, 110, 16827 (2006). DOI: 10.1021/jp0615959
- A. Marchioro, P.J. Whitham, K.E. Knowles, T.B. Kilburn, P.J. Reid, D.R. Gamelin. J. Phys. Chem. C, 120, 27040--27049 (2016). DOI: 10.1021/acs.jpcc.6b08336
- A. Hasselbarth, A. Eychmuller, H. Weller. Chem. Phys. Lett., 203 (2, 3), 271--276 (1993). DOI: 10.1016/0009-2614(93)85400-I
- J.T. Randall, M.H.F. Wilkins. Proc. R. Soc. Lond. A, 184, 390--407 (1945). DOI: 10.1098/rspa.1945.0025
- F. Urbach. Phys. Rev., 92, 1324 (1953). DOI: 10.1103/PhysRev.92.1324
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.