Photodegradation of IR luminescence of Ag2Se colloidal quantum dots
Aslanov S. V. 1, Grevtseva I. G. 1, Kondratenko T. S. 1, Hussein A. M. H.1, Ovchinnikov O. V. 1, Smirnov M.S. 1, Latyshev A. N.1
1Voronezh State University, Voronezh, Russia
Email: windmaster7@yandex.ru, grevtseva_ig@inbox.ru, optichka@yandex.ru, ovchinnikov_o_v@rambler.ru, Smirnov_M_S@mail.ru

PDF
Photodegradation of exciton and trap-state luminescence, in bands with maxima at 705 and 905 nm respectively, of hydrophilic Ag2Se colloidal quantum dots (QD), passivated with 2-mercaptopropionic acid molecules (Ag2Se/2MPA) was established. Herewith, the exciton band is characterized by complete quenching of luminescence of Ag2Se/2MPA QD as the sample gets exposed. Trap-state luminescence experiences quenching by 40-60%. The quenching of trap-state luminescence is accompanied by an acceleration of luminescence kinetics and a decrease in the decay time from 280 to 210 ns. In this case, photodegradation of luminescence in this band is reversible. After 24 h of storage of the exposed colloidal solution of Ag2Se/2MPA QDs, a long-wave shift of the trap-state luminescence band to the region of 960-1200 nm occurs, with an even greater decrease in its decay time to 170 ns. The regularities gained are explained by the formation of core/shell systems Ag2Se/SeO2 with a type I heterojunction. Keywords: luminescence, luminescence decay time, photodegradation, quantum dot, core/shell system, silver selenide.
  1. Quantum Dots Fundamentals, Synthesis and Applications, ed. by Rakshit A., Jayesh P. Bhatt Suresh C. Ameta (Elsevier, 2022). DOI: 10.1016/C2020-0-01037-6
  2. Fundamentals of Sensor Technology Principles and Novel Designs, ed. by Ahmed Barhoum, Zeynep Altintas (Elsevier, 2023). DOI: 10.1016/C2020-0-03445-6
  3. Sensors Based on Nanostructured Materials, ed. by F. Arregui (Springer, 2009). DOI: 10.1007/978-0-387-77753-5
  4. J. Kim, J. Roh, M. Park, C. Lee. Adv. Mater., 36, 2212220 (2024). DOI: 10.1002/adma.202212220
  5. M.G. Spirin, S.B. Brichkin, V.Yu. Gak, V.F. Razumov. J. Lumin., 226, 117297 (2020). DOI: 10.1016/j.jlumin.2020.117297
  6. O.V. Ovchinnikov, S.V. Aslanov, M.S. Smirnov, I.G. Grevtseva, A.S. Perepelitsa. RSC Adv., 9, 37312-37320 (2019). DOI: 10.1039/c9ra07047h
  7. O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko. J. Lumin., 207, 626-632 (2018). DOI: 10.1016/j.jlumin.2018.12.019
  8. D.G. Kim, N. Teratani, M. Nakayama. Jpn. J. Appl. Phys., 41, 5064 (2002). DOI: 10.1143/JJAP.41.5064
  9. R. An, F. Zhang, X. Zou, et al. ACS Appl. Mater. Interfaces, 10 (45), 39222-39227 (2018). DOI: 10.1021/acsami.8b14480
  10. M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, G. Rumbles. J. Phys. Chem. B, 107 (41), 11346-11352 (2003). DOI: 10.1021/jp035598m
  11. Y. Wang, Z. Tang, M.A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N.A. Kotov, L.M. Liz-Marz?n. J. Phys. Chem. B, 108 (40), 15461-15469 (2004). DOI: 10.1021/jp048948t
  12. M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. i spektr., 124, 5 (2018) (in Russian). DOI: 10.1134/S0030400X18050211
  13. O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Optical and Quantum Electronics, 52 (4), 1998 (2020). DOI: 10.1007/s11082-020-02314-8
  14. A. Henglein. Electrochemistry II. Topics in Current Chemistry, 143 (1988). DOI: 10.1007/BFb0018073
  15. V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii, A.A. Chistyakov, I. Nabiev. Proc. SPIE, 9126, 91263N-8 (2014). DOI: 10.1117/12.2057828
  16. K.V. Vokhmintcev, C. Guhrenz, N. Gaponik, I. Nabiev, P.S. Samokhvalov. IOP Conf. Series: J. Physics: Conf. Series, 784, 012014 (2017). DOI: 10.1088/1742-6596/784/1/012014
  17. J.A. Kloepfer, S.E. Bradforth, J.L. Nadeau. J. Phys. Chem. B, 109, 9996-10003 (2005). DOI: 10.1021/jp044581g
  18. E.V. Klyachkovskaya, S.V. Vashchenko, A.P. Stupak, S.V. Gaponenko. J. Appl. Spectrosc., 77 (5), (2010). DOI: 10.1007/s10812-010-9395-4
  19. I. Grevtseva, O. Ovchinnikov, M. Smirnov, S. Aslanov, V. Derepko, A. Perepelitsa, T. Kondratenko. J. Lumin., 257, 119669 (2023). DOI: 10.1039/d1ra08806h
  20. A. Sahu, A. Khare, D.D. Deng, D.J. Norris. Chem. Commun., 48, 5458 (2012). DOI: 10.1039/c2cc30539a
  21. A. Tubtimtae, M.W. Lee, G.J. Wang. J. Power Sources, 196, 6603-6608 (2011). DOI: 10.1016/j.jpowsour.2011.03.074
  22. L.J. Shi, C.N. Zhu, H. He, D.L. Zhu, Z.L. Zhang, D.W. Pang, Z.Q. Tian. RSC Adv. 6, 38183-38186 (2016). DOI: 10.1039/c6ra04987g
  23. A. Langevin, D. Lachance-Quirion, A.M. Ritcey, C.N. Allen. J. Phys. Chem. 117, 5424-5428 (2013). DOI: 10.1021/jp311206e
  24. B. Ramezanloo, M. Molaei, M. Karimipour. J. Lumin., 204, 419-423 (2018). DOI: 10.1016/j.jlumin.2018.08.049
  25. M. Shi, J. Ding, X. Liu, Q. Zhong. Atmospheric Pollution Research, 10 (2), 412-417 (2019). DOI: 10.1016/j.apr.2018.08.010

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru