Aslanov S. V.
1, Grevtseva I. G.
1, Kondratenko T. S.
1, Hussein A. M. H.
1, Ovchinnikov O. V.
1, Smirnov M.S.
1, Latyshev A. N.
11Voronezh State University, Voronezh, Russia
Email: windmaster7@yandex.ru, grevtseva_ig@inbox.ru, optichka@yandex.ru, ovchinnikov_o_v@rambler.ru, Smirnov_M_S@mail.ru
Photodegradation of exciton and trap-state luminescence, in bands with maxima at 705 and 905 nm respectively, of hydrophilic Ag2Se colloidal quantum dots (QD), passivated with 2-mercaptopropionic acid molecules (Ag2Se/2MPA) was established. Herewith, the exciton band is characterized by complete quenching of luminescence of Ag2Se/2MPA QD as the sample gets exposed. Trap-state luminescence experiences quenching by 40-60%. The quenching of trap-state luminescence is accompanied by an acceleration of luminescence kinetics and a decrease in the decay time from 280 to 210 ns. In this case, photodegradation of luminescence in this band is reversible. After 24 h of storage of the exposed colloidal solution of Ag2Se/2MPA QDs, a long-wave shift of the trap-state luminescence band to the region of 960-1200 nm occurs, with an even greater decrease in its decay time to 170 ns. The regularities gained are explained by the formation of core/shell systems Ag2Se/SeO2 with a type I heterojunction. Keywords: luminescence, luminescence decay time, photodegradation, quantum dot, core/shell system, silver selenide.
- Quantum Dots Fundamentals, Synthesis and Applications, ed. by Rakshit A., Jayesh P. Bhatt Suresh C. Ameta (Elsevier, 2022). DOI: 10.1016/C2020-0-01037-6
- Fundamentals of Sensor Technology Principles and Novel Designs, ed. by Ahmed Barhoum, Zeynep Altintas (Elsevier, 2023). DOI: 10.1016/C2020-0-03445-6
- Sensors Based on Nanostructured Materials, ed. by F. Arregui (Springer, 2009). DOI: 10.1007/978-0-387-77753-5
- J. Kim, J. Roh, M. Park, C. Lee. Adv. Mater., 36, 2212220 (2024). DOI: 10.1002/adma.202212220
- M.G. Spirin, S.B. Brichkin, V.Yu. Gak, V.F. Razumov. J. Lumin., 226, 117297 (2020). DOI: 10.1016/j.jlumin.2020.117297
- O.V. Ovchinnikov, S.V. Aslanov, M.S. Smirnov, I.G. Grevtseva, A.S. Perepelitsa. RSC Adv., 9, 37312-37320 (2019). DOI: 10.1039/c9ra07047h
- O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko. J. Lumin., 207, 626-632 (2018). DOI: 10.1016/j.jlumin.2018.12.019
- D.G. Kim, N. Teratani, M. Nakayama. Jpn. J. Appl. Phys., 41, 5064 (2002). DOI: 10.1143/JJAP.41.5064
- R. An, F. Zhang, X. Zou, et al. ACS Appl. Mater. Interfaces, 10 (45), 39222-39227 (2018). DOI: 10.1021/acsami.8b14480
- M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, G. Rumbles. J. Phys. Chem. B, 107 (41), 11346-11352 (2003). DOI: 10.1021/jp035598m
- Y. Wang, Z. Tang, M.A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N.A. Kotov, L.M. Liz-Marz?n. J. Phys. Chem. B, 108 (40), 15461-15469 (2004). DOI: 10.1021/jp048948t
- M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. i spektr., 124, 5 (2018) (in Russian). DOI: 10.1134/S0030400X18050211
- O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Optical and Quantum Electronics, 52 (4), 1998 (2020). DOI: 10.1007/s11082-020-02314-8
- A. Henglein. Electrochemistry II. Topics in Current Chemistry, 143 (1988). DOI: 10.1007/BFb0018073
- V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii, A.A. Chistyakov, I. Nabiev. Proc. SPIE, 9126, 91263N-8 (2014). DOI: 10.1117/12.2057828
- K.V. Vokhmintcev, C. Guhrenz, N. Gaponik, I. Nabiev, P.S. Samokhvalov. IOP Conf. Series: J. Physics: Conf. Series, 784, 012014 (2017). DOI: 10.1088/1742-6596/784/1/012014
- J.A. Kloepfer, S.E. Bradforth, J.L. Nadeau. J. Phys. Chem. B, 109, 9996-10003 (2005). DOI: 10.1021/jp044581g
- E.V. Klyachkovskaya, S.V. Vashchenko, A.P. Stupak, S.V. Gaponenko. J. Appl. Spectrosc., 77 (5), (2010). DOI: 10.1007/s10812-010-9395-4
- I. Grevtseva, O. Ovchinnikov, M. Smirnov, S. Aslanov, V. Derepko, A. Perepelitsa, T. Kondratenko. J. Lumin., 257, 119669 (2023). DOI: 10.1039/d1ra08806h
- A. Sahu, A. Khare, D.D. Deng, D.J. Norris. Chem. Commun., 48, 5458 (2012). DOI: 10.1039/c2cc30539a
- A. Tubtimtae, M.W. Lee, G.J. Wang. J. Power Sources, 196, 6603-6608 (2011). DOI: 10.1016/j.jpowsour.2011.03.074
- L.J. Shi, C.N. Zhu, H. He, D.L. Zhu, Z.L. Zhang, D.W. Pang, Z.Q. Tian. RSC Adv. 6, 38183-38186 (2016). DOI: 10.1039/c6ra04987g
- A. Langevin, D. Lachance-Quirion, A.M. Ritcey, C.N. Allen. J. Phys. Chem. 117, 5424-5428 (2013). DOI: 10.1021/jp311206e
- B. Ramezanloo, M. Molaei, M. Karimipour. J. Lumin., 204, 419-423 (2018). DOI: 10.1016/j.jlumin.2018.08.049
- M. Shi, J. Ding, X. Liu, Q. Zhong. Atmospheric Pollution Research, 10 (2), 412-417 (2019). DOI: 10.1016/j.apr.2018.08.010
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.