Accuracy and applicability of the standardized methods of processing the temperature data in laser and piezoelectric laser calorimetry
Zotov K. V.1, Ostapiv A. Yu.1, Tereshchenko N. V.1, Ryabushkin O. A.2
1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Analytical expressions for the correction factors allowing to account for the finite thermal conductivity in the measuring optical absorption coeffcieint by laser calorimetry (LC) and piezoelectric resonance laser calorimetry (PRLC) methods were obtained. It was proven that the PRLC method compared to the LC method is far more resistant to the effects of the finite thermal conductivity of the sample. In practice, the main sources of error in measuring the absorption coefficient by the PRLC method turn out to be variations of the ambient temperature and of the heat transfer conditions. Modifications of the standardized methods are proposed that allows to partially account for the non-ideal experimental conditions. The correction factors that were obtained may broaden the scope of the PRLC and LC methods to the large samples or to the ones having the low heat conductivity. Keywords: optical absorption, laser calorimetry, heat equation, piezoelectric laser calorimerty, piezoelectric resonance.
- National standard of the Russian Federation. GOST R ISO 11551-2015. Optics and optical instruments. Laser and laser-related equipment. Test method for absorptance of optical laser components (Standartinform, Moscow 2017)
- U. Willamowski, T. Gross, D. Ristau, H. Welling. Proc. SPIE, 2870, 483-494 (1996). DOI:10.1117/12.259934
- P. Meja, U. Broulik, U. Pfeifer, B. Steiger. Proc. SPIE, 2966, 96-104 (1997)
- K.V. Zotov, N.V. Tereshchenko, A.Yu. Ostapiv, G.Yu. Ivanov, O.A. Ryabushkin. Bull. Lebedev Phys. Inst., 51 (1), S51-S57 (2024). DOI:10.3103/S1068335624600165
- O.A. Ryabushkin, A.V. Konyashkin, D.V. Myasnikov, V.A. Tyrtyshnyy, O.I. Vershinin. Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII, 8874, 141-149 (2013) DOI: 10.1117/12.2023285
- G.A. Aloyan, N.V. Kovalenko, I.V. Grishchenko, A.V. Konyashkin, O.A. Ryabushkin. Acoust. Phys., 68 (5), 427-434 (2022)
- D.S. Grebenkov, B. Nguyen. SIAM Rev., 55(4), 601-667 (2013). DOI:10.1137/120880173
- G. Enrique Bernal. Appl. Opt., 14(2), 314-321 (1975). DOI:10.1364/AO.14.000314
- D.N. Nikogosyan Nonlinear optical crystals: a complete survey (Springer Science \& Business Media, 2006)
- R. Atkinson. Appl. Opt., 24 (4), 464-471 (1985). DOI: 10.1364/AO.24.000464
- U. Williamowski. Standardisation-suited Methods for the Precise Characterisation of Absorptance, Reflectance and Transmittance of Optical Components. PhD thesis. (Laser Zentrum Hannover e. V., Hannover, 2018)
- K.V. Zotov, I.V. Grischenko, A.V. Konyashkin, O.A. Ryabushkin. Appl. Opt., 62, 4047-4051 (2023). DOI: 10.1364/AO.485644
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.