Luminescent properties of colloidal Ag2S quantum dots passivated with thioglycolic acid molecules in the presence of oxtetracycline
Kondratenko T. S. 1
1Voronezh State University, Voronezh, Russia
Email: optichka@yandex.ru

PDF
It was found that in the presence of oxytetracycline molecules, the spectral absorption and luminescence profiles of colloidal Ag2S quantum dots passivated with thioglycolic acid (TGA) molecules are transformed. When mixing a colloidal solution of Ag2S/TGA quantum dots with antibiotic molecules, a peak with a maximum at 820 nm appears in the absorption spectrum, and a shift in the luminescence maximum to the short-wave region (from 940 to 860 nm) accompanied by an increase in its intensity is observed in the luminescence spectrum. The observed regularities are due to a change in the state of the Ag2S/TGA quantum dots interface due to binding to the oxytetracycline molecule through the interaction of the tricarbonyl group with dangling bonds on the surface of the quantum dots and passivator molecules, providing the formation of new radiative recombination centers. The obtained results indicate the possibility of practical application of a colloidal solution of Ag2S/TGA quantum dots as a luminescent receptor for the presence of tetracycline antibiotics in solution. Keywords: trap-state luminescence, Ag2S quantum dots, oxytetracycline, interface.
  1. Y. Zeng, F. Chang, Q. Liu, L. Duan, D. Li, H. Zhang. J. Analyt. Methods in Chemistry, Article ID 5091181 (2022). DOI: 10.1155/2022/5091181
  2. R.S. Kozlov, A.V. Golub. KMAX, 21 (4), 310 (2019). DOI: 10.31857/S0869587324010033
  3. M. Majdinasab, K. Mitsubayashi, J.L. Marty. Trends Biotechnol., 37, 898 (2019). DOI: 10.1016/j.tibtech.2019.01.004
  4. R. Ding, Y. Chen, Q. Wang, Z. Wu, X. Zhang, B. Li, L. Lin. J. Pharmaceutical Analysis, 12 (3), 355 (2022). DOI: 10.1016/j.jpha.2021.08.002
  5. S.Z.H. Hashmi, T.K. Dhiman, N. Chaudhary, A.K. Singh, R. Kumar, J.G. Sharma, A. Kumar, P.R. Solanki. Front. Nanotechnol., 3, 616186 (2021). DOI: 10.3389/fnano.2021.616186
  6. Y. Cao, X. Wang, H. Bai, P. Jia, Y. Zhao, Y. Liu, L. Wang, Y. Zhuang, T. Yue. LWT --- Food Science and Technology, 157 (17), 113100 (2022). DOI: 10.1016/j.lwt.2022.113100
  7. W.-J. Wu, Q. Zhao, R. Zhou Y.-C. Liang, W.-B. Zhao, C.-X. Shan. Spectrochim. Acta, Part A: Molec. Biomolec. Spectrosc., 259, 119901 (2021). DOI: 10.1016/j.saa.2021.119901
  8. N. Liang, X. Hu, W. Li, Y. Wang, Z. Guo, X. Huang, Z. Li, X. Zhang, J. Zhang, J. Xiao, X. Zou, J. Shi. Food Chemistry, 378 (20), 132076 (2022). DOI: 10.1016/j.foodchem.2022.132076
  9. S.K. Anand, U. Sivasankaran, A.R. Jose, K.G. Kumar. Spectrochim. Acta, Part A: Molec. Biomolec. Spectrosc., 213, 410 (2019). DOI: 10.1016/j.saa.2019.01.068
  10. Y. Fan, W. Qiao, W. Long, H. Chen, H. Fu, C. Zhou, Y. She. Spectrochim. Acta, Part A: Molec. Biomolec. Spectrosc., 274, 121033 (2022). DOI: 10.1016/j.saa.2022.121033
  11. K. Mili, Z. Hsine, Y. Chevalier, S. Hbaieb, R. Mlika. Opt. Materials, 125, 112103 (2022). DOI: 10.1016/j.optmat.2022.112103ff
  12. Q.-Q. Zhu, Q.-S. Zhou, H.-W. Zhang, W.-W. Zhang, D.-Q. Lu, M.-T. Guo, Y. Yuan, F. Sun, H. He. Inorg. Chem., 59, 1323 (2020). DOI: 10.1021/acs.inorgchem.9b03032
  13. K. Ren, S.-H. Wu, X.-F. Guo, H. Wang. Inorg. Chem., 58, 4223 (2019). DOI: 10.1021/acs.inorgchem.8b03284
  14. A.P. Demchenko. Fluorescence Detection Techniques. Introduction to Fluorescence Sensing (Springer, Cham, 2015), p. 69-132. DOI: 10.1007/978-3-319-20780-3
  15. G. Zhang, T. Li, J. Zhang, A. Chen. Sens. Actuators B: Chem., 273, 1648 (2018). DOI: 10.1016/j.snb.2018.07.066
  16. X. Sun, Y. Lei. Trends Anal. Chem., 89, 163 (2017). DOI: 10.1016/j.trac.2017.02.001
  17. Z.-D. Zhou, S.-Q. Li, Y. Liu, B. Du, Y.-Y. Shen, B.-Y. Yu, C.-C. Wang. RSC Adv., 12 (13), 7780 (2022). DOI: 10.1039/d2ra00376g
  18. C. Yazhini, J. Rafi, P. Chakraborty, S. Kapse, R. Thapa, B. Neppolian. J. Cleaner Prod., 373, 133929 (2022). DOI: 10.1016/j.jclepro.2022.133929
  19. S. Chen, Y.-L. Yu, J.-H. Wang. Anal. Chim. Acta, 999, 13 (2018). DOI: 10.1016/j.aca.2017.10.026
  20. R. Rani, A. Deep, B. Mizaikoff, S. Singh. J. Electroanal. Chem., 909, 116124 (2022). DOI: 10.1016/j.jelechem.2022.116124
  21. Z. Cai, H. Li, X. Wang, C. Min, J. Wen, R. Fu, Z. Dai, J. Chen, M. Guo, H. Yang, P. Bai, X. Lu, T. Wu, Y. Wu. Colloids Surf. A, 647, 129202 (2022). DOI: 10.1016/j.colsurfa.2022.129202
  22. L. Liu, Q. Chen, J. Lv, Y.P. Li, K.C. Wang, J.R. Li. Inorg. Chem., 61, 8015 (2022). DOI: 10.1021/acs.inorgchem.2c00754Inorg
  23. Z.-Z. Li, M.-X. Wub, S.-N. Ding. Analytical Methods, 13 (20), 2297 (2021). DOI: 10.1039/d1ay00428j
  24. S. Tan, Q. Wang, Q. Tan, S. Zhao, L. Huang, B. Wang, X. Song, M. Lan. Chemosensors, 11 (1), 62 (2023). DOI: 10.3390/chemosensors11010062
  25. A.M. Verwald, G.N. Chugreeva, K.A. Laptinskiy, I.I. Vlasov, T.A. Dolenko. Opt. Spectrosc., 131 (11), 18 (2023) (in Russian). DOI: 10.61011/EOS.2025.01.60568.7262-24
  26. K. Mili, Z. Hsine, Y. Chevalier, S. Hbaieb, R. Mlika. Opt. Materials, 125, 112103 (2022). DOI: 10.1016/j.optmat.2022.112103
  27. J. Zhou, F. Ma, K. Chen, W. Zhao, R. Yang, C. Qiao, H. Shen, W.-S. Su, M. Lu, Y. Zheng, R. Zhang, L. Chena, S. Wang. Nanoscale Adv., 5 (15), 3896 (2023). DOI: 10.1039/d3na00251a
  28. Z. Liu, C. Chang, W. Zhang, M. Yang, Q. Zhang. IOP Conf. Ser. Mater. Sci. Eng., 562 (1), 012067 (2019). DOI: 10.1088/1757-899X/562/1/012067
  29. F.O. Silva, M.S. Carvalho, R. Mendon ca, W.A.A. Macedo, K. Balzuweit, P. Reiss, M.A. Schiavon. Nanoscale Research Lett., 7 (1), 536 (2012). DOI: 10.1186/1556-276X-7-536
  30. V.L. Ermolaev. Opt. Spectrosc., 125 (2), 256 (2018). DOI: 10.1134/S0030400X18080052
  31. M.Yu. Khmeleva, K.A. Laptinskiy, T.A. Dolenko. Opt. Spectrosc., 131 (6), 20 (2023) (in Russian). DOI: 10.21883/OS.2023.06.55913.104-23
  32. M.S. Smirnov, O.V. Ovchinnikov. J. Lumin., 227, 117526 (2020). DOI: 10.1016/j.jlumin.2020.117526
  33. O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Optical and Quantum Electronics, 52 (4), 198 (2020). DOI: 10.1007/s11082-020-02314-8
  34. T.S. Kondratenko, O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, O. Erina, V. Khokhlov, B. Darinsky, E.P. Tatianina. Materials, 13 (4), 909 (2020). DOI: 10.3390/ma13040909
  35. I.G. Grevtseva, S.V. Aslanov. Bulletin Rus. Acad. Sci.: Physics., 84 (5), 517 (2020). DOI:10.3103/s1062873820050111
  36. I.G. Grevtseva, O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, A.M. Khysein, N.E. Egorov, E.A. Vozgorkova. Opt. Spectrosc., 130 (12), 1634 (2022). DOI:10.21883/os.2022.12.54100.4106-22
  37. S.B. Hafiz, M.M.A. Mahfuz, M.R. Scimeca, S. Lee. Physica E, Low-dimensional Systems and Nanostructures, 124, 114223 (2020). DOI: 10.1016/j.physe.2020.114223
  38. O.V. Ovchinnikov, A.S. Perepelitsa, M.S. Smirnov, A.N. Latyshev, I.G. Grevtseva, R.B. Vasiliev, G.N. Goltsman, A.G. Vitukhnovsky. J. Lumin., 220, 117008 (2020). DOI: 10.1016/j.jlumin.2019.117008
  39. S. Shen, Y. Zhang, L. Peng, Y. Du, Q. Wang. Angew. Chem. Int. Ed. Engl., 50 (31), 7115 (2011). DOI: 10.1002/anie.201101084
  40. M. Karimipour, N. Moradi, M. Molaei. J. Lumin., 182, 91 (2017). DOI: 10.1016/j.jlumin.2016.09.063
  41. M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin et al. Opt. Spectrosc., 130, 224-231 (2022). DOI: 10.1134/S0030400X22030146
  42. Y.V. Kuznetsova, S.V. Rempel, I.D. Popov, E. Gerasimov, A.A. Rempel. Colloids and Surfaces A: Physicochem. Eng. Aspects, 520, 369 (2017). DOI: 10.1016/j.colsurfa.2017.02.013
  43. P.S. Samokhvalov, A.V. Karaulov, I.R. Nabiev. Opt. i spectr., 131 (99), 18 (2023) (in Russian). DOI: 10.61011/EOS.2025.01.60568.7262-24
  44. E.D. Cosco, I. Lim, E.M. Sletten. ChemPhotoChem, 5 (8), 727 (2021). DOI: 10.1002/cptc.202100045
  45. S.I. Sadovnikov, A.I. Gusev, AA. Rempel. Phys. Chem. Chem. Phys., 17 (19), 12466 (2015). DOI: 10.1039/c5cp00650c
  46. C. Khurana, A.K. Vala, N. Andhariya, O.P. Pandey, B. Chudasama. IET Nanobiotechnol., 10 (2), 69 (2016). DOI: 10.1049/iet-nbt.2015.0005
  47. B. Carlotti, D. Fuoco, F. Elisei. Phys. Chem. Chem. Phys., 12 (48), 15580 (2010). DOI: 10.1039/c0cp00044b
  48. O.G. Othersen, F.R Beierlein, H. Lanig, T. Clark. J. Phys. Chem. B, 107 (49), 13743 (2003). DOI: 10.1021/jp0364506
  49. G. Caminati, C. Focardi, G. Gabrielli, F. Gambinossi, B. Mecheri, M. Nocentini, M. Puggelli. Materials Science and Engineering C, 22, 301 (2002). DOI: 10.1016/S0928-4931(02)00217-5 DOI: 10.1016/S0928-4931(02)00217-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru