Kondratenko T. S.
11Voronezh State University, Voronezh, Russia
Email: optichka@yandex.ru
It was found that in the presence of oxytetracycline molecules, the spectral absorption and luminescence profiles of colloidal Ag2S quantum dots passivated with thioglycolic acid (TGA) molecules are transformed. When mixing a colloidal solution of Ag2S/TGA quantum dots with antibiotic molecules, a peak with a maximum at 820 nm appears in the absorption spectrum, and a shift in the luminescence maximum to the short-wave region (from 940 to 860 nm) accompanied by an increase in its intensity is observed in the luminescence spectrum. The observed regularities are due to a change in the state of the Ag2S/TGA quantum dots interface due to binding to the oxytetracycline molecule through the interaction of the tricarbonyl group with dangling bonds on the surface of the quantum dots and passivator molecules, providing the formation of new radiative recombination centers. The obtained results indicate the possibility of practical application of a colloidal solution of Ag2S/TGA quantum dots as a luminescent receptor for the presence of tetracycline antibiotics in solution. Keywords: trap-state luminescence, Ag2S quantum dots, oxytetracycline, interface.
- Y. Zeng, F. Chang, Q. Liu, L. Duan, D. Li, H. Zhang. J. Analyt. Methods in Chemistry, Article ID 5091181 (2022). DOI: 10.1155/2022/5091181
- R.S. Kozlov, A.V. Golub. KMAX, 21 (4), 310 (2019). DOI: 10.31857/S0869587324010033
- M. Majdinasab, K. Mitsubayashi, J.L. Marty. Trends Biotechnol., 37, 898 (2019). DOI: 10.1016/j.tibtech.2019.01.004
- R. Ding, Y. Chen, Q. Wang, Z. Wu, X. Zhang, B. Li, L. Lin. J. Pharmaceutical Analysis, 12 (3), 355 (2022). DOI: 10.1016/j.jpha.2021.08.002
- S.Z.H. Hashmi, T.K. Dhiman, N. Chaudhary, A.K. Singh, R. Kumar, J.G. Sharma, A. Kumar, P.R. Solanki. Front. Nanotechnol., 3, 616186 (2021). DOI: 10.3389/fnano.2021.616186
- Y. Cao, X. Wang, H. Bai, P. Jia, Y. Zhao, Y. Liu, L. Wang, Y. Zhuang, T. Yue. LWT --- Food Science and Technology, 157 (17), 113100 (2022). DOI: 10.1016/j.lwt.2022.113100
- W.-J. Wu, Q. Zhao, R. Zhou Y.-C. Liang, W.-B. Zhao, C.-X. Shan. Spectrochim. Acta, Part A: Molec. Biomolec. Spectrosc., 259, 119901 (2021). DOI: 10.1016/j.saa.2021.119901
- N. Liang, X. Hu, W. Li, Y. Wang, Z. Guo, X. Huang, Z. Li, X. Zhang, J. Zhang, J. Xiao, X. Zou, J. Shi. Food Chemistry, 378 (20), 132076 (2022). DOI: 10.1016/j.foodchem.2022.132076
- S.K. Anand, U. Sivasankaran, A.R. Jose, K.G. Kumar. Spectrochim. Acta, Part A: Molec. Biomolec. Spectrosc., 213, 410 (2019). DOI: 10.1016/j.saa.2019.01.068
- Y. Fan, W. Qiao, W. Long, H. Chen, H. Fu, C. Zhou, Y. She. Spectrochim. Acta, Part A: Molec. Biomolec. Spectrosc., 274, 121033 (2022). DOI: 10.1016/j.saa.2022.121033
- K. Mili, Z. Hsine, Y. Chevalier, S. Hbaieb, R. Mlika. Opt. Materials, 125, 112103 (2022). DOI: 10.1016/j.optmat.2022.112103ff
- Q.-Q. Zhu, Q.-S. Zhou, H.-W. Zhang, W.-W. Zhang, D.-Q. Lu, M.-T. Guo, Y. Yuan, F. Sun, H. He. Inorg. Chem., 59, 1323 (2020). DOI: 10.1021/acs.inorgchem.9b03032
- K. Ren, S.-H. Wu, X.-F. Guo, H. Wang. Inorg. Chem., 58, 4223 (2019). DOI: 10.1021/acs.inorgchem.8b03284
- A.P. Demchenko. Fluorescence Detection Techniques. Introduction to Fluorescence Sensing (Springer, Cham, 2015), p. 69-132. DOI: 10.1007/978-3-319-20780-3
- G. Zhang, T. Li, J. Zhang, A. Chen. Sens. Actuators B: Chem., 273, 1648 (2018). DOI: 10.1016/j.snb.2018.07.066
- X. Sun, Y. Lei. Trends Anal. Chem., 89, 163 (2017). DOI: 10.1016/j.trac.2017.02.001
- Z.-D. Zhou, S.-Q. Li, Y. Liu, B. Du, Y.-Y. Shen, B.-Y. Yu, C.-C. Wang. RSC Adv., 12 (13), 7780 (2022). DOI: 10.1039/d2ra00376g
- C. Yazhini, J. Rafi, P. Chakraborty, S. Kapse, R. Thapa, B. Neppolian. J. Cleaner Prod., 373, 133929 (2022). DOI: 10.1016/j.jclepro.2022.133929
- S. Chen, Y.-L. Yu, J.-H. Wang. Anal. Chim. Acta, 999, 13 (2018). DOI: 10.1016/j.aca.2017.10.026
- R. Rani, A. Deep, B. Mizaikoff, S. Singh. J. Electroanal. Chem., 909, 116124 (2022). DOI: 10.1016/j.jelechem.2022.116124
- Z. Cai, H. Li, X. Wang, C. Min, J. Wen, R. Fu, Z. Dai, J. Chen, M. Guo, H. Yang, P. Bai, X. Lu, T. Wu, Y. Wu. Colloids Surf. A, 647, 129202 (2022). DOI: 10.1016/j.colsurfa.2022.129202
- L. Liu, Q. Chen, J. Lv, Y.P. Li, K.C. Wang, J.R. Li. Inorg. Chem., 61, 8015 (2022). DOI: 10.1021/acs.inorgchem.2c00754Inorg
- Z.-Z. Li, M.-X. Wub, S.-N. Ding. Analytical Methods, 13 (20), 2297 (2021). DOI: 10.1039/d1ay00428j
- S. Tan, Q. Wang, Q. Tan, S. Zhao, L. Huang, B. Wang, X. Song, M. Lan. Chemosensors, 11 (1), 62 (2023). DOI: 10.3390/chemosensors11010062
- A.M. Verwald, G.N. Chugreeva, K.A. Laptinskiy, I.I. Vlasov, T.A. Dolenko. Opt. Spectrosc., 131 (11), 18 (2023) (in Russian). DOI: 10.61011/EOS.2025.01.60568.7262-24
- K. Mili, Z. Hsine, Y. Chevalier, S. Hbaieb, R. Mlika. Opt. Materials, 125, 112103 (2022). DOI: 10.1016/j.optmat.2022.112103
- J. Zhou, F. Ma, K. Chen, W. Zhao, R. Yang, C. Qiao, H. Shen, W.-S. Su, M. Lu, Y. Zheng, R. Zhang, L. Chena, S. Wang. Nanoscale Adv., 5 (15), 3896 (2023). DOI: 10.1039/d3na00251a
- Z. Liu, C. Chang, W. Zhang, M. Yang, Q. Zhang. IOP Conf. Ser. Mater. Sci. Eng., 562 (1), 012067 (2019). DOI: 10.1088/1757-899X/562/1/012067
- F.O. Silva, M.S. Carvalho, R. Mendon ca, W.A.A. Macedo, K. Balzuweit, P. Reiss, M.A. Schiavon. Nanoscale Research Lett., 7 (1), 536 (2012). DOI: 10.1186/1556-276X-7-536
- V.L. Ermolaev. Opt. Spectrosc., 125 (2), 256 (2018). DOI: 10.1134/S0030400X18080052
- M.Yu. Khmeleva, K.A. Laptinskiy, T.A. Dolenko. Opt. Spectrosc., 131 (6), 20 (2023) (in Russian). DOI: 10.21883/OS.2023.06.55913.104-23
- M.S. Smirnov, O.V. Ovchinnikov. J. Lumin., 227, 117526 (2020). DOI: 10.1016/j.jlumin.2020.117526
- O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Optical and Quantum Electronics, 52 (4), 198 (2020). DOI: 10.1007/s11082-020-02314-8
- T.S. Kondratenko, O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, O. Erina, V. Khokhlov, B. Darinsky, E.P. Tatianina. Materials, 13 (4), 909 (2020). DOI: 10.3390/ma13040909
- I.G. Grevtseva, S.V. Aslanov. Bulletin Rus. Acad. Sci.: Physics., 84 (5), 517 (2020). DOI:10.3103/s1062873820050111
- I.G. Grevtseva, O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, A.M. Khysein, N.E. Egorov, E.A. Vozgorkova. Opt. Spectrosc., 130 (12), 1634 (2022). DOI:10.21883/os.2022.12.54100.4106-22
- S.B. Hafiz, M.M.A. Mahfuz, M.R. Scimeca, S. Lee. Physica E, Low-dimensional Systems and Nanostructures, 124, 114223 (2020). DOI: 10.1016/j.physe.2020.114223
- O.V. Ovchinnikov, A.S. Perepelitsa, M.S. Smirnov, A.N. Latyshev, I.G. Grevtseva, R.B. Vasiliev, G.N. Goltsman, A.G. Vitukhnovsky. J. Lumin., 220, 117008 (2020). DOI: 10.1016/j.jlumin.2019.117008
- S. Shen, Y. Zhang, L. Peng, Y. Du, Q. Wang. Angew. Chem. Int. Ed. Engl., 50 (31), 7115 (2011). DOI: 10.1002/anie.201101084
- M. Karimipour, N. Moradi, M. Molaei. J. Lumin., 182, 91 (2017). DOI: 10.1016/j.jlumin.2016.09.063
- M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin et al. Opt. Spectrosc., 130, 224-231 (2022). DOI: 10.1134/S0030400X22030146
- Y.V. Kuznetsova, S.V. Rempel, I.D. Popov, E. Gerasimov, A.A. Rempel. Colloids and Surfaces A: Physicochem. Eng. Aspects, 520, 369 (2017). DOI: 10.1016/j.colsurfa.2017.02.013
- P.S. Samokhvalov, A.V. Karaulov, I.R. Nabiev. Opt. i spectr., 131 (99), 18 (2023) (in Russian). DOI: 10.61011/EOS.2025.01.60568.7262-24
- E.D. Cosco, I. Lim, E.M. Sletten. ChemPhotoChem, 5 (8), 727 (2021). DOI: 10.1002/cptc.202100045
- S.I. Sadovnikov, A.I. Gusev, AA. Rempel. Phys. Chem. Chem. Phys., 17 (19), 12466 (2015). DOI: 10.1039/c5cp00650c
- C. Khurana, A.K. Vala, N. Andhariya, O.P. Pandey, B. Chudasama. IET Nanobiotechnol., 10 (2), 69 (2016). DOI: 10.1049/iet-nbt.2015.0005
- B. Carlotti, D. Fuoco, F. Elisei. Phys. Chem. Chem. Phys., 12 (48), 15580 (2010). DOI: 10.1039/c0cp00044b
- O.G. Othersen, F.R Beierlein, H. Lanig, T. Clark. J. Phys. Chem. B, 107 (49), 13743 (2003). DOI: 10.1021/jp0364506
- G. Caminati, C. Focardi, G. Gabrielli, F. Gambinossi, B. Mecheri, M. Nocentini, M. Puggelli. Materials Science and Engineering C, 22, 301 (2002). DOI: 10.1016/S0928-4931(02)00217-5 DOI: 10.1016/S0928-4931(02)00217-5
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.