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Delayed luminescence kinetics of nanocrystals and its interpretation
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The kinetics of luminescence decay of nanocrystals (NCs) contains important information about the excited

states of the NCs, the type and number of traps of charge carriers (electrons, holes) or excitation-energy acceptors

(molecules, other NCs), the trap energy distribution, and the mechanism of electron excitation-energy transfer from

NCs to acceptors. Usually, the kinetics of NC luminescence decay is non-exponential and can be approximated

with good accuracy by the sum of two or three exponentials. In recent years, it has been experimentally observed

that after pulsed excitation, the luminescence intensity of an ensemble of NCs decreases at large times according

to a power law. To explain this regularity, a new model of the NC ensemble and a corresponding new function

for fitting the kinetics of luminescence decay are proposed. This function is obtained on the basis of the balance

equations and assuming an exponential distribution of traps by energies and reversible return of charge carriers

from the traps to the NCs. Fitting experimental data with the proposed function allows to estimate the trapping

rate of charge carriers and the parameters of the trap energy distribution function.
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Introduction

The luminescence decay kinetics of nanocrystals

(NCs) semiconductor quantum dots (QDs), nanowires,

nanoplatelets, and nano-rings) contains important informa-

tion about the structure of the electronic energy levels of the

NCs and the mechanisms of NC interaction with acceptors

of electronic excitation energy (molecules, other NCs) or

with charge carriers (electrons, holes) in NCs with traps.

The analysis of the luminescence decay kinetics (based on

currently existing models) makes it possible to determine

the number of traps or excitation energy acceptors, the traps

energy, identify the mechanism of electron excitation energy

transfer from NCs to acceptors, and determine the charge

carriers trapping rate and the rate of detrapping to the NC

emitting state [1–19].
Generally, the kinetics of luminescence decay of a NC

ensemble I(t) is non-exponential and can be approximated

with good precision using a sum of two or three exponents:

I(t) = A1e
−t/τ1 + A2e−t/τ2 + A3e

−t/τ3 . (1)

In equation (1) the fitting parameters are the time constants

(τ1, τ2, τ3) and amplitudes (A1, A2 and A3). Taking into

account the normalization condition for I(t) (in the initial

moment of time I(0) = 1, and A1 + A2 + A3 = 1), the

function (1) has five independent fitting parameters (three
time constants and two amplitudes). The physical meaning

of these parameters is not always clear [18,20].
Often, the exponent with the longest decay time is asso-

ciated either with the luminescence of NCs without traps

or acceptors, or with delayed luminescence of NCs due to

detrapping of charge carriers to the emitting state of the

NCs. In [20], several models of NC interaction with traps

and acceptors are analyzed, in which the approximation

of I(t) by a sum of two or three exponents (1) has a

clear physical meaning, and a relationship is established

between the fitting parameters (between the time constants

τ1, τ2, τ3). This allows reducing the number of fitting

parameters in equation (1) up to four.

In the present work, two models of NC ensemble are

analyzed, explaining the increase in the duration of the

NC luminescence. In the first model, different NCs in the

ensemble have a different number of identical traps, from

which the charge carriers may return to the NC emitting

state. The different number of traps and the detrapping

of charge carriers lead to the non-exponential kinetics of

luminescence decay of the NC ensemble. In addition, the

detrapping of charge carriers increases the duration of NC

luminescence, i.e. leads to delayed luminescence.

In the second model, the traps are not identical (Fig. 1):
they have different energies (the trap energy is calculated

relative to the conduction band edge energy level for elec-

tron traps or relative to the valence band edge energy level

for the hole traps) and are characterized by some energy

distribution function. Note that the highest and lowest

quantum size energy levels in NCs are called conduction

band edge and valence band edge levels in analogy to the

situation in bulk solids. It can be shown that if the energy

distribution function of the traps decreases exponentially

with the energy growth, then the luminescence intensity

I(t) of the NC ensemble decreases according to the power-

law pattern at long times. Such behavior I(t) in ensembles
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Figure 1. Graph of NC ensemble electronic levels with non-

identical traps: τ is lifetime of NC emitting state in the absence

of traps (1/τ is luminescence decay rate), k1 and k2 are rates of

electron capture by traps and electron detrapping to NC emitting

state, f (1E) is function of trap distribution by energies.

of QDs, nano-wires, nanoplatelets, and nano-rings was

observed experimentally in the works [21–24].

Kinetics of NC ensemble luminescence
decay with different number of identical
traps

The problem of the kinetics I(t) of NC ensemble lumi-

nescence decay in the case of reversible trapping of charge

carriers was addressed in the works jcite7-9. It was assumed

that 1) each NC has a different number (N) of traps, 2)
the number of traps per NC follows a Poisson distribution,

3) the traps are identical, i.e. the trapping rates (k1) and

the detrapping rates (k2) of charge carriers are the same

for all traps. Under these assumptions, the corresponding

balance equations were solved, and the following expression

was obtained for the normalized kinetics of NC ensemble

luminescence decay after pulsed excitation:

I(t) =

∞
∑

N=0

e−N̄ N̄N

N!
ANe−α1(N)t/τ +

∞
∑

N=0

e−N̄ N̄N

N!
BNe−α2(N)t/τ .

(2)
In equation (2) N̄ is average number of traps per one NC,

τ is NC luminescence decay time in the absence of traps.

(It should be stressed that in the case of QDs characterized

by energetically close bright (emitting) and dark states, τ

is equal to the twice the lifetime of the bright state [3,25–
27] at room temperatures, since at these temperatures the

populations of bright and dark states become equal due to

the electron-vibrational interaction.)

Other parameters in equation (2) are defined by the

following equations:

The exponents

α1(N) =
1

2
(1 + NK1 + K2) +

√

1

4
(1 + NK1 + K2)2 − K2,

(3)

α2(N) =
1

2
(1 + NK1 + K2) −

√

1

4
(1 + NK1 + K2)2 − K2,

(4)
the amplitudes are given by

AN =
1 + NK1 − α2(N)

α1(N) − α2(N)
, BN = 1− AN, (5)

and the dimensionless trapping and detrapping rate con-

stants of the charges carriers are respectively equal to

K1 = k1τ , K2 = k2τ . (6)

The equation (2) was used to fitting the kinetics of NC

luminescence decay in papers [7,8,12,14–17].
Note that since α2(N) < α1(N), the first sum in the

equation (2) decreases faster over time than the second

one. The second sum determines the delayed luminescence

caused by the detrapping of charge carriers to NCs emitting

state (at K2 = 0, the second sum becomes zero, since under

this condition the amplitudes BN = 0).
In the present work we focus on delayed luminescence,

i.e., on the study of the second sum in equation (2). Let

us denote this sum as Id(t). Let us consider the special

case — luminescence decay kinetics at 1 ≪ K2 ≪ K1, i.e.

given that the rates of the charge carriers trapping and their

detrapping to NC emitting state are larger compared to the

rate 1/τ . Then equation (2) is converted to the form

I(t) = e−N̄−t/τ +

∞
∑

N=1

e−N̄ N̄N

N!

(

1−
1

N
K2

K1

)

e−NK1t/τ

+
∞
∑

N=1

e−N̄ N̄N

N!

1

N
K2

K1

e−
1
N

K2
K1

t/τ
. (7)

All terms of the first sum in (7) are rapidly decreased over

time: NK1 ≫ 1, and the terms of the second sum decrease

slowly: K2/(NK1) ≪ 1.

Thus, under considered conditions, the kinetics of delayed

luminescence of NC Id(t) is expressed as

Id(t) =

∞
∑

N=1

e−N̄ N̄N

N!

1

N
K2

K1

e−
1
N

K2
K1

t/τ
(8)

and provides the major contribution to the full luminescence

intensity (7).
From the formula (8) it follows that Id(t) does not

directly depend on the rate of charge carrier trapping K1,

but depends on the ratio of rates K2/K1 and the average

number of traps per NC.
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Figure 2. Kinetics of luminescence decay (2) at different values

of trapping rate of charge carriers: (a) K1 = 10 (curve 1, top,

blue), 100 (2, middle, yellow) and 1000 (3, bottom, green).
K2/K1 = 0.1, N̄ = 5; (b) over time, the relative position of the

curves starts to change (curve 1, blue, becomes bottom); (c) at

large time (t/τ ≥ 50) all curves practically coincide (according to

formula (8)), since all curves are calculated at one and the same

value K2/K1 = 0.1.

Figure 2 illustrates the kinetics of luminescence decay I(t)
calculated by formula (2) at different time intervals with

various values K1 (10, 100 and 1000) and K2/K1 = 0.1.

The calculations demonstrate the correctness of formula (8)

even at relatively small values of K1 and K2: all curves cal-

culated for K1 = 10, 100 and 100, at large times (Fig. 2, c)

practically coincide, since for all curves K2/K1 = 0.1.

Thus, according to equation (8), the intensity of delayed

luminescence Id(t) and, consequently, the total lumines-

cence intensity of the NC ensemble (2) at large times

(i. e. the asymptote I(t)) are described by the sum of

exponentials with different values of the indexes K2/(NK1).
Hence, in the considered NC model Id(t) and I(t) decrease

over time in the non-exponentially.

Kinetics of NC ensemble luminescence
decay with different number of
non-identical traps

In the works [21–24] it was experimentally found that

the luminescence intensity I(t) for some NCs at large times

(i.e. asymptotic behavior I(t)) decreases with time as an

inverse power law: I(t) ∼ 1/tc , where c is constant. This

behavior I(t) was explained within the framework of a

three-level NC model (the ground and emitting states of

NC and the trap level), in which the distribution of rates

of detrapping of charge carriers k2 to the emitting state of

NC is described by some broad distribution function f s(k2).
In [21] this function was assumed to be exponential, while

in [22–24] it was assumed to be a log-normal distribution

(similar distribution was used in [28] to approximate the QD

luminescence kinetics at large times).
In the present work, in order to explain the behaviour

observed in [21–24] the following assumptions are made:

1) different NCs in the ensemble have different number

of traps,

2) the number of traps per NC follows a Poisson

distribution (with an average value of N̄),
3) the levels of electrons (holes) traps are located at

different energy distances 1E from the emitting (ground)
state of NC (Fig. 1),
4) the principle of detailed balance is valid, i.e. the

charge carrier trapping rate k1 and detrapping rate k2 to

the emitting state of NC are related by

k2/k1 = exp(−1E/kT ), (9)

5) the traps distribution across energies 1E is described

by the function

f (1E) = β exp(−β1E), (10)

where β is constant (β > 0).
Such energy distribution of electron traps in colloidal QDs

of CdS was proposed in [29], and was used to explain the

long-time phosphorescence of solids [30]; it coincides with

the dependence of the light absorption coefficient of some

solids (including semiconductors) on the photon energy

near the optical absorption edge (Urbach’s rule [31]).
Based on the assumptions made and the corresponding

balance equations, we propose a new function that can be

used for fitting the experimental kinetics of NC ensemble

luminescence decay, whose asymptotic behavior at large

times is a decrease according to a power law. The fitting
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parameters are the following: charge carriers trapping rate

constant k1, parameter β in the trap energy distribution

function (10), average number of traps N̄ per NC, and the

time constant of NC luminescence decay in the absence of

traps τ .

The balance equations for the population of NC emitting

state with N traps, p(N, 1E, t), and the population of the

trap state, ptrap(t), used in this study are identical to the

corresponding equations in [7,8]. Taking into account the

assumptions made above, these equations are expressed as

follows:

d p(N, 1E, t)
dt

= −
1

τ
p(N, 1E, t)

− Nk1p(N, 1E, t) + Nk2ptrap(t), (11)

d ptrap(t)
dt

= −k2ptrap(t) + k1p(N, 1E, t). (12)

Under pulse excitation of NC (i.e. under initial condition
p(N, 1E, 0) = 1) these equations have solution as a sum of

two exponents:

p(N, 1E, t) = ANe−α1(N)t/τ + BNe−α2(N)t/τ . (13)

Coefficients α1(N), α2(N), AN and BN in equation (13) are

defined by previous formulae (3)−(5). However, given

the detailed balance principle (9) and the above-described

dimensionless rates K1 and K2 (formulae (6)) coefficients

α1(N) and α2(N) are transformed to

α1(N) =
1

2

(

1 + K1(N + e−1E/kT )
)

+

√

1

4

(

1 + K1(N + e−1E/kT )
)2

− K1e−1E/kT ,

(14)

α2(N) =
1

2

(

1 + K1(N + e−1E/kT )
)

−

√

1

4

(

1 + K1(N + e−1E/kT )
)2

− K1e−1E/kT ,

(15)
α2(N) − α2(N) =

= 2

√

1

4

(

1 + K1(N + e−1E/kT )
)2

− K1e−1E/kT . (16)

To obtain the kinetics of NC ensemble luminescence

decay, it is necessary to average the population of the

emitting state of NC p(N, 1E, t) (13) over the trap energies

(with the distribution function (10)) and the number of

traps in NC (using Poisson distribution), which leads to the

equation

I(t) =

∞
∑

N=0

e−N̄ N̄N

N!

∞
∫

0

βe−β1E p(N, 1E, t)d(1E). (17)

For the convenience of further numerical computations

and obtaining analytical results, we shall perform the follow-

ing transformations of formula (17). First, we calculate the

kinetics of NC ensemble luminescence decay with a fixed

number of traps N on each NC, I(N, t), but with different

values 1E , i.e., let us first perform in equation (17) the

averaging over 1E :

I(N, t) =

∞
∫

0

βe−β1E p(N, 1E, t)d(1E). (18)

According to equation (17), the kinetics of luminescence

decay of the entire NC ensemble is obtained by averaging

the function (18) over N with the Poisson distribution

function:

I(t) =

∞
∑

N=0

e−N̄ N̄N

N!
I(N, t). (19)

For convenience of numerical computations, let us intro-

duce in expression (18) the dimensionless variable x and

the dimensionless parameter b:

x = 1E/kT, b = βkT. (20)

Then the distribution function (10) and the kinetics of

NC ensemble luminescence decay with a fixed number of

traps N (18) are written as

f (x) = be−bx , (21)

I(N, t) = b

∞
∫

0

e−bx p(N, x , t)dx . (22)

Let us change the integration variable again:

y = e−x . (23)

When x varies from 0 to ∞ the variable y changes from 1

to 0, dx = −dy/y , and the kinetics I(N, t) (22) in the new

variables becomes

I(N, t) = b

∞
∫

0

yb−1p(N, y, t)dy. (24)

Coefficients α1(N) and α2(N) defining the temporal depen-

dence of population p(N, y, t) (formula (13)), then take the

form:

α1(N) =
1

2

(

1 + K1(N + y)
)

+

√

1

4

(

1 + K1(N + y)
)2
− K1y ,

(25)

α2(N) =
1

2

(

1 + K1(N + y)
)

+

√

1

4

(

1 + K1(N + y)
)2
− K1y ,

(26)

α1(N) − α2(N) = 2

√

1

4

(

1 + K1(N + y)
)2

− K1y . (27)

Let us investigate the behavior of the function (24)
at large times, i.e. calculate its asymptotic behavior.

The asymptote of function (24) is determined by the
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second exponent in the formula (13) with the smallest

exponent α2(N)
(

α2(N) < α1(N)
)

, consequently,

p(N, y, t) ∝ BNe−α2(N)t/τ . (28)

By substituting (28) into (22), in the asymptotic limit (at
t → ∞) we obtain (Appendix A)

I(N, t) ∝ b

∞
∫

0

e−bx BNe−α2(N)t/τ dx ∝ bŴ(b + 1)Nb
(τ

t

)b+1

,

(29)

where Ŵ(b + 1) =
∞
∫

0

wbe−wdw is gamma-function.

Thus, the function (29) (i.e. kinetics of NC luminescence

decay with fixed number of traps, I(N, t)) decreases at

large times according to an inverse power law as 1/tb+1

and increases with increasing number of traps in the NCs

as Nb .

The kinetics of the entire NC ensemble luminescence

decay (19), I(t), and its asymptote are obtained by averag-

ing the expressions (24) and (29) with Poisson distribution

function, respectively. In the new variables

I(t) =

∞
∑

N=0

e−N̄ N̄N

N!
b

∞
∫

0

yb−1p(N, y, t)dy, (30)

and at large times, given formula (29), we obtain

I(t) ∝ bŴ(b + 1)Nb
(τ

t

)b+1

, (31)

where

Nb =

∞
∑

N=0

Nbe−N̄ N̄N

N!
. (32)

Thus, in the proposed model, the kinetics of NC

ensemble luminescence decay decreases over long times in

a power-law manner (as 1/tb+1), determined by the trap

energy distribution function (10), namely by the coefficient

b = βkT . The amplitude of the asymptote (31), given by

bŴ(b + 1)Nb, increases with the average number of traps

as Nb .

Figure 3 illustrates the functions (30), I(t), and (24),
I(N, t), for equal values of parameters K1 and b and N̄ = N.

The functions coincide at small (t/τ < 0.1, Fig. 3, a) and

large times (t/τ > 50, Fig. 3, c). At intermediate times

(Fig. 3, b) a large divergence is observed.

Figure 4 shows the kinetics of luminescence decay (30)
at different values of the average number of traps N̄ in

NC and equal values of other parameters (b and K1). As

expected, at small times, the kinetics of NC luminescence

decay with the largest average number of traps (Fig. 4, a,
N̄ = 4, curve 1, blue) decreases faster. At long times

(Fig. 4, b), the position of the curves changes according to

the formula (31): the numerical coefficient bŴ(b + 1)Nb in

the asymptote (31) for (τ /t)b+1 is equal to 2.21, 1.23 and

0.67 for N̄ = 4, 2 and 1, respectively.
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Figure 3. Comparison of the luminescence decay I(t) (30)
of NC ensemble (curve 1, blue) with kinetics of luminescence

decay I(N, t) (24) of NC with a fixed number of traps (curve 2,

yellow) in different time intervals. Parameters: N̄ = N = 5,

K1 = 1.2, b = 0.8. (a) Functions I(t) and I(N, t) coincide at small

times (t/τ < 0.1), (b) change their positions at in intermediate

times, (c) at large times (at t/τ > 50) the luminescence decay

kinetics (30) and (24) (their asymptotes) coincide again which

was predicted from the formulae (31) and (29) at N̄ = N.

Figure 5 shows the kinetics of luminescence decay (30)
at different values b (b = βkT ), equal values K1 and average

number of traps N̄ in NC. At short times (Fig. 5, a),
the luminescence corresponding to the lowest value of b
(curve 1, blue) decreases faster, since in this case the

proportion of deep traps in the NC ensemble is large

(according to formula (10)), from where the detrapping rate

to NC emitting state is small. At long times (Fig. 5, b) the

position of curves starts to change: curve 1 (blue) becomes

the upper curve. This follows from the asymptote (31):
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Figure 4. Kinetics of luminescence decay I(t) (30) at various val-
ues N̄: 4 (curve 1, blue), 2 (2, yellow) and 1 (1, green); b = 0.8,

K1 = 1.1. At large times (Fig. b) the curve 1 (blue) becomes the

upper curve, as expected from the asymptotic behavior (31), since
numerical coefficient bŴ(b + 1)Nb in asymptote (31) at (τ /t)b+1

is equal to 2.21, 1.23 and 0.67, respectively for N̄ = 4, 2 and 1.

all curves are approaching the time axis according to the

inverse power law, but at τ /t ≪ 1 with the increase of b
the values (τ /t)b+1 in (31) become smaller.

Figure 6 compares the long-time behavior of lumines-

cence decay kinetics (30) with asymptote (31) at small

values K1 = 1.1. As can be seen even at small values K1

at long times (t/τ > 30) the exact function (30) coincides

with its asymptote (31).

Note that the power-law character of luminescence

decay (31) over long periods of time (in the proposed

NC ensemble model) is due to the exponential form of

the trap energy distribution function (10) and the detailed

balance condition (9). From deriving the formula (29)

(Appendix A) it follows that any other function of trap

distribution over energies f (1E), which differs from (10) at

small 1E , but decreases exponentially with increasing 1E
at large 1E , also results in asymptotic behavior (31), i.e., to

the inverse power law of luminescence decay (30) at long

times.

By using formulae (9) and (10), we may calculate the

corresponding distribution function, f s(K2), for traps over

the dimensionless rates of detrapping (K2) of the charge
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Figure 5. Kinetics of luminescence decay I(t) (30) at different

values b: (a) 0.4 (curve 1, blue, bottom curve), 0.8 (2, yellow,
middle curve) and 1.6 (3, green, top curve). N̄ = 2, K1 = 1.1.

(b) At large times the positions of curves start to change: the

curve 1 (blue) becomes the top curve. This follows from the

asymptote (31): all curves are approaching the time axis according

to an inverse power law, but at τ /t ≪ 1 with the increase of

parameter b the values (τ /t)b+1 in formula (31) decrease faster

with time.
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Figure 6. Kinetics of luminescence decay I(t) (30)
(curves 1, 2, 3) and its asymptote (31) (curves 1′ , 2′ , 3′) at different
values N̄ : 4 (curves 1, 1′), 2 (curves 2, 2′) and 1 (curves 3, 3′).
b = 0.8, K1 = 1.1. At large times (t/τ > 30), the kinetics of

luminescence decay I(t) (30) coincides with the asymptote (31).

carriers to NC emitting state. It is easy to check that

f s (K2) =
b

Kb
1

Kb−1
2 , (33)
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Figure 7. Functions of traps distribution (a) over energies,

f (x) (21) (x = 1E/kT ), and (b) over the rates of the charge

carriers detrapping to NC emitting state, f s(K2/K1) (33). Param-

eter b = 2 (curves 1, blue), 1 (curves 2, yellow), 0.5 (curves 3,

green), 0.1 (curves 4, red).

and, thus,

f s (K2)dK2 = b
(K2

K1

)b−1

d
(K2

K1

)

= f s

(K2

K1

)

d
(K2

K1

)

. (34)

According to detailed balance principle (9), K2 changes

from 0 to K1, and, hence, the ratio K2/K1 changes from 0

to 1. Figure 7 illustrates the dependencies of distribution

functions f (x) (19) and f s(K2/K1) for different values

b = 0.1, 0.5, 1, 2.

Note that it is precisely this type of (33) distribution

function f s (K2) in [21] that explains the power-law decrease

in the luminescence intensity of semiconductor NCs at long

times and indicates the relationship of the discovered pattern

with the blinking of single NCs luminescence.

Two models of NC ensemble compared:
kinetics of luminescence decay (2)
and (30)

Let us now compare the kinetics of luminescence de-

cay (2) and (30), corresponding to different models of NC

ensemble with traps, for the same values N̄ and K1(Fig. 8).
As seen from Fig. 8, a, at short periods of time (t/τ < 1)

the curves corresponding to functions (2) and (30) are

coinciding. By increasing the parameter K2 in formula (2)
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Figure 8. Luminescence decay kinetics (2) (curves 1, blue)
compared with kinetics (30), calculated at equal values N̄ (N̄ = 5)
and K1 = 1.1. The luminescence decay kinetics (30) was

calculated at different values b: 0.4 (curve 2, yellow, second from

bottom), 0.8 (curve 3, green, third from bottom) and 1.6 (curve 4,

orange, fourth from bottom). The luminescence decay kinetics (2)
(curve 1, blue, first from bottom) was calculated at K2 = 0.01 (a)
and K2 = 0.2 (b, c).

it is possible to increase the initial time interval from 0.01

to 0.2, where these curves practically coincide (Fig. 7, b).
However, at longer periods the curves divergence is quite

sufficient (Fig. 8, c). This may serve as a basis for choosing

the appropriate model of NC ensemble with traps.

Now let us compare the models of kinetics of lumi-

nescence decay (2) and (30) for the purposes of fitting

experimental results. Let the function (2) ideally repre-

sent the experimental kinetics of the luminescence decay

(curve 1, blue, in Fig. 9), while the accuracy of experimental

data is 0.01 of the maximum luminescence intensity (i.e.,
at the initial moment of time). In these assumptions the

experimental values shall lie within the curves I(t) − 0.01
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(curve 2, green, in Fig. 9) and I(t) + 0.01 (curve 3,

yellow, in Fig. 9), where I(t) is the function (2). Let us

now select the parameters of the function (30) so that

its values describe the experiment in the best way, i.e.

fall within the range specified above: from I(t) − 0.01 to

I(t) + 0.01. Naturally, for coincidence of functions (2)
and (30) at initial time interval their parameters N̄ and

K1 shall coincide. For the values of function (30) to

lie in the above-mentioned interval (from I(t) − 0.01 to

I(t) + 0.01) at large time we change the parameter b in

the function (30). Figure 9 illustrates the behavior of

functions (2) and (30) at optimized parameters (b = 0.4,

K2 = 0.2).

From Fig. 9 it follows that both models of NC ensemble

(functions (2) and (30)) can equally well (within the

error of 1%) reproduce the experimental results (in the

considered time interval 0 ≤ t/τ ≤ 150). More accurate

measurements and longer time intervals for measuring the

kinetics of luminescence decay are needed in order to select

the appropriate model of NC ensemble with traps based on

comparison of theory and experiment.

In Appendix B a simplified version of the function is

proposed for approximating I(t), decreasing according to

the inverse power law over long times.
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Figure 9. Comparison of luminescence decay kinetics (2)
(curve 1, blue — I(t); curve 2, green — I(t) − 0.01 and curve 3,

yellow — I(t) + 0.01) and kinetics (30) (curve 4, red) at short (a)
and long (b) times. Parameter values: N̄ = 5, K1 = 1.1, K2 = 0.2,

b = 0.4. As can be seen from the Figure, the kinetics (30)
(curve 4, red) within the error (±0.01) correctly reproduces the

”
experimental data“ (lying between the curves 2, blue, and 3,

green) within the time interval 0 ≤ t/τ ≤ 150.

Conclusion

A comparative analysis of two functions proposed for

modeling the kinetics of NC delayed luminescence decay

is carried out. The functions were obtained within the

framework of two NC ensemble models with traps, from

which the reversible return of the charge carriers to the

emitting state of NC is carried out, leading to non-

exponential delayed luminescence decay.

In the first model, the traps are considered identical

(in particular, their energy is fixed), the number of traps

in NC is different (described by the Poisson distribution),
and the charge carriers are reversibly returned from the

traps to the emitting state of NC. As a result, the kinetics

of luminescence decay over long periods is the sum of

exponentially decreasing functions of time.

The following is proposed for the second model. As

in the first model, we assume that (a) the number of

traps in NC is different and is described by the Poisson

distribution, (b) from the traps, the charge carriers are

reversibly returned to the emitting state of NC. Additionally,

we assume that (c) traps have different energy levels,

the distribution of traps over energy is described by an

exponentially decreasing function of energy, and (d) the

principle of detailed balance is valid. On this basis, a new

function was obtained for fitting the experimental kinetics

of luminescence decay of a NC ensemble. At large times,

this function predicts delayed luminescence decay according

to an inverse power law. The power exponent in this law

depends on the rate of decrease of the trap distribution

function with the energy increase, the intensity of delayed

luminescence increases with increasing average number of

traps in the NCs.

Appendix A

Derivation of formula (29)
Let us investigate the behavior of the function (24) at

large times, i.e. calculate its asymptotic behavior. The

time dependence of function (24) over long periods is

determined by the second exponent in the formula (13)
with the lowest exponent α2(N) (α2(N) < α1(N)):

p(N, y, t) ∝ BNe−α2(N)t/τ . (A1)

This dependence is explained by detrapping of the charge

carriers to the NC emitting state, leading to delayed

luminescence.

The largest contribution to the delayed luminescence of

NC at long periods of time is provided by the so-called

”
deep“ traps, from where the charge carriers return to NC

emitting state at low rate. For these traps 1E/kT > 1, and,

hence, K2 ≪ K1 and y = exp(−1R/kT) ≪ 1.

Further, we shall assume that K1 ≫ 1. Under this

condition, the traps capture a significant portion of charge

carriers from NC emitting state, which leads to an increase

in the intensity of delayed luminescence. At K1 ≫ 1 and
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y < y0 ≪ 1 (where y0 = e−1E0/kT is a boundary parameter

which conventionally divides the traps into
”
deep“ traps

with 1E ≥ 1E0 and
”
shallow“ traps with 1E < 1E0) from

equations (5), (25)−(28) it follows that

α2(N) =
y
N
, BN =

y
N
, (A2)

p(N, y, t) ∝
y
N

e−
y
N

t
τ . (A3)

Deep traps for which y ≤ y0 contribute to the asymptotic

kinetics of luminescence decay (24). Therefore, to get the

asymptote, in (24) we shall use only integration over y
from 0 to y0. We thus obtain

I(N, t) ∝ b

y0
∫

0

yb

N
e−

y
N

t
τ dy. (A4)

Let us make another substitution of variables: T = t/τ ,
z = Ty . Then dz = T dy , dy = dz/T . When y varies

from 0 to y0 the variable z changes from 0 to y0T . Using

these variables the equation (A4) is be expressed as

I(N, t) ∝
b

T b+1

y0T
∫

0

z b

N
e−z /Ndz . (A5)

In the asymptotic limit (at T → ∞) from (A5) we obtain

the formula (29):

I(N, t) ∝
b

T b+1

∞
∫

0

z b

N
e−z /Ndz

=
bNb

T b+1

∞
∫

0

( z
N

)b
e−z /Nd

( z
N

)

= bŴ(b + 1)Nb
( τ

t

)b+1

,

(A6)

where Ŵ(b + 1) =
∞
∫

0

wbe−wdw is gamma-function.

Appendix B

A simple function for fitting the kinetics of lumines-

cence decay

Taking into account the exponential nature of the decrease

of luminescence intensity (30) at short time periods and

the power-law pattern at long time periods (31), we can

propose a simplified version of the function for fitting

experimental data:

I(t) = θ(tgr − t)e−Kt + θ(t − tgr)e
−ktgr

( tgr
t

)b+1

, (B1)

where θ is Heaviside function, tgr is time when the first

and second terms of equation (B1) becomes equal. Three

parameters are considered as fitting: K, tgr, and b.
For smoothing the dependence (B1) at a moment of time

tgr (i.e. for removal of jump of the derivative function (B1)

at t = tgr) it is required to replace θ-function, for example,

by its approximated equivalent — a function of

θ(tgr − t) ≈ 1− exp
(

−(t/tgr)
2
)

. (B2)

Then a simple fitting function takes the form

I(t) = e−Kt +
[

1− exp
(

−(t/tgr)
2
)]

e−Ktgr
( tgr

t

)b+1

. (B3)

Such function equivalent to (B3) was used in papers [22–
24,28].

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] R. Koole, B. Luigjes, M. Tachiya, R. Pool, T.J.H. Vlugt,
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