Periodically perforated aluminum film for enhancing chemiluminescence
Petrov N. S. 1, Dadadzhanov D. R. 1, Vartanyan T. A. 1
1ITMO University, St. Petersburg, Russia
Email: n.s.petrov110@yandex.ru, daler.dadadzhanov@gmail.com, Tigran.Vartanyan@mail.ru

PDF
The influence of a thin periodically perforated aluminum film on the rate of radiative relaxation of excited luminol molecules was investigated. Numerical modeling showed that an aluminum film with a thickness of 20 nm and cylindrical holes with a radius of 36 nm, arranged in a square lattice with a period of 230 nm, accelerates the chemiluminescence of luminol at a wavelength of 430 nm. The acceleration of radiative transitions and the corresponding increase in chemiluminescence intensity exceed 10 times in most of the volume of the nanohole and are weakly dependent on the position of the emitting molecule and the orientation of the transition dipole moment. Keywords: radiative transitions, chemiluminescence, plasmon resonance, luminol.
  1. C. Dodeigne, L. Thunus, R. Lejeune. Talanta, 51 (3), 415 (2000). DOI: 10.1016/S0039-9140(99)00294-5
  2. B. Gomez-Taylor, M. Palomeque, J.V. Garci a Mateo, J. Marti nez Calatayud. J. pharmaceutical and biomedical analysis, 41 (2), 347 (2006). DOI: 10.1016/j.jpba.2005.11.040
  3. Hiroyuki Yasui, Hiromu Sakurai. Biochemical and biophysical research commun., 269 (1), 2000 (131). DOI: 10.1006/bbrc.2000.2254
  4. Wanchao Yu, Lixia Zhao. TrAC Trends in Analytical Chemistry, 136, 116197 (2021). DOI: 10.1016/j.trac.2021.116197
  5. K. Aslan, C.D. Geddes. Chemical Society Reviews, 38 (9), 2556 (2009) DOI: 10.1039/B807498B
  6. D.R. Dadadzhanov, I.A. Gladskikh, M.A. Baranov, T.A. Vartanyan, A. Karabchevsky. Sensors and Actuators B: Chemical, 333, 129453 (2021). DOI: 10.1016/j.snb.2021.129453
  7. D.R. Dadadzhanov, A.V. Palekhova, T.A. Vartanyan. Opt. Spectrosc., 131 (12), 1646 (2023). DOI: 10.61011/EOS.2023.12.58186.5850-23
  8. Ashish Tiwari, S.J. Dhoble. Talanta, 180, 1 (2018). DOI: 10.1016/j.talanta.2017.12.031
  9. Yanchun Zhao, Miao Chen, Yanan Zhang, Tao Xu, Weimin Liu. Materials Lett., 59 (1), 40 (2005). DOI: 10.1016/j.matlet.2004.09.018
  10. M. Foquet, K.T. Samiee, X. Kong, B.P. Chauduri, P.M. Lundquist, S.W. Turner, J. Freudenthal, D.B. Roitman. J. Appl. Phys., 103 (3), 034301 (2008). DOI: 10.1063/1.2831366
  11. M.J.K. Klein, M. Guillaumee, B. Wenger, L.A. Dunbar, J. Brugger, H. Heinzelmann, R. Pugin. Nanotechnology, 21 (20), 205301 (2010). DOI: 10.1088/0957-4484/21/20/205301
  12. Wang Jian, Jing Du. Appl. Sci., 6 (9), 239 (2016). DOI: 10.3390/app6090239
  13. K.M. McPeak, S.V. Jayanti, S.J.P. Kress, S. Meyer, S. Iotti, A. Rossinelli, D.J. Norris. ACS Photonics, 2 (3), 326 (2015). DOI: 10.1021/ph5004237
  14. A. Kadir, C.D. Geddes. Chemical Soc. Rev., 38 (9), 2556 (2009). DOI: 10.1039/B807498B
  15. Hao Chen, Feng Gao, Rong He, Daxiang Cui. J. colloid and interface sci., 315 (1), 158 (2007). DOI: 10.1016/j.jcis.2007.06.052

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru