Research of the characteristics of a radio-frequency ion thruster with an external magnetic field for use in air-breathing electric propulsion thruster
Vavilin K. V.1, Golikov A. A.1, Dvinin S. A.1, Dudin V. S.1, Zadiriev I. I.1, Kralkina E. A.1, Loktionov E. Y.1, Nikonov A. M.1, Sazonov V. V.1, Filatyev A. S.1,2, Shvydkiy G. V.1
1Lomonosov Moscow State University, Moscow, Russia
2Moscow Aviation Institute National Research University, Moscow, Russia
Email: vsd97@list.ru
This work examines the characteristics of a model of a radio-frequency inductive ion thruster (RF IT) with a diameter of 10 cm, operating on nitrogen and oxygen, when an external longitudinal magnetic field with an induction of no more than 75 Gas is applied to the discharge. It has been experimentally shown that an external magnetic field can reduce the energy consumption for ion current generation by up to 40%. Numerical calculations of discharge parameters in nitrogen have demonstrated that atomic ions make a significant contribution to the ion current and thrust. The obtained experimental and computational data made it possible to evaluate the parameters of the RF IT prototype, which determine the possibilities of its use as part of an air-breathing electric propulsion thruster. Keywords: air-breathing electric propulsion, radio-frequency discharge, ultra-low earth orbits, plasma, ion beam, propellant utilization efficiency.
- A.S. Filatiev, A.A. Golikov. Dokl. RAN. Fizika, tekhnicheskie nauki, 508, 68 (2023) (in Russian). https://doi.org/10.31857/S2686740023010030
- V.Ya. Marov, A.S. Filatiev Space research, 56 (2), 137 (2018). https://doi.org/10.7868/S0023420618020061
- A.S. Filatyev, A.A. Golikov, A.I. Erofeev, S.A. Khartov, A.S. Lovtsov, D.I. Padalitsa, V.V. Skvortsov, O.V. Yanova. Progr. Aerospace Sci. 136, 100877 (2023). https://doi.org/10.1016/j.paerosci.2022.100877
- Peng Zheng, Jianjun Wu, Yu Zhang, Biqi Wu. Intern. J. Aerospace Eng. Article ID 8811847, 21 (2020). https://doi.org/10.1155/2020/8811847
- F. Romano, R.F. Helicon. Plasma Thruster for an Atmosphere-Breathing Electric Propulsion System (ABEP). (PhD thesis, Institute of Space Systems (IRS), University of Stuttgart, 2021)
- K. Fujita. Transactions Jpn. Society Mechan. Eng. B, 70 (700), 3038 (2004). http://ci.nii.ac.jp/naid/110004999698/en/
- Y. Hisamoto, K. Nishiyama, H. Kuninaka. Development Statue of Atomic Oxygen Simulator for Air Breathing Ion Engine (32nd Intern. Electric Propulsion Conf., Wiesbaden, Germany, September 11-15, 2011), IEPC-2011-294
- Y. Hisamoto, K. Nishiyama, H. Kuninaka. Design of air intake for air breathing ion engine (in: 63rd Intern. Astronautical Congress, IAC-12, Naples, Italy, 1-5 October 2012), IAC-12-C4.4.10
- M. Tagawa, K. Yokota, K. Nishiyama, H. Kuninaka, Y. Yoshizawa, D. Yamamoto, T. Tsuboi. J. Propulsion and Power, 29 (3), 501 (2013). http://dx.doi.org/10.2514/1.B34530
- K. Diamant, A 2-stage cylindrical hall thruster for air breathing electric propulsion (in: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference \& Exhibit, Nashville, TN, 25-28 July 2010), AIAA 2010-6522
- G. Cifali, T. Misuri, P. Rossetti, M. Andrenucci, D. Valentian, D. Feili, B. Lotz. Experimental characterization of HET and RIT with atmospheric propellants (32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11-15, 2011), IEPC-2011-224
- A. Shabshelowitz. Study of RF plasma technology applied to air-breathing electric propulsion (Ph.D. thesis, University of Michigan, 2013)
- K. Hohman. Atmospheric breathing electric thruster for planetary exploration (Busek Co. Inc. 11, 2012), p. 01760-1023
- A.I. Erofeev, A.P. Nikiforov, G.A. Popov, M.O. Suvorov, S.A. Syrin, S.A. Khartov. Solar System Research, 51 (7), 639 (2017). https://doi.org/10.1134/S0038094617070048
- S.V. Gordeev, S.V. Kanev, M.O. Suvorov, S.A. Khartov. Estimation of parameters of a high-frequency ramjet ion thruster (Trudi MAI B. N 96)
- S. Barral, G. Cifali, R. Albertoni, M. Andrenucci, L. Walpot. Conceptual Design of an Air-Breathing Electric Propulsion System, Joint Conference of 30th International Symposium on Space Technology and Science (34th Intern. Electric Propulsion Conf. and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July 4-10, 2015), IEPC-2015-271/ISTS-2015-b-271
- Jianjun Wu, Peng Zheng, Yu Zhang, Haibin Tang. Prog. Aero. Sci., 133, 100848 (2022). https://doi.org/10.1016/j.paerosci.2022.100848
- C. Rapisarda, P.C. Roberts, K.L. Smith. Acta Astronaut, 202, 77 (2023). https://doi.org/10.1016/j.actaastro.2022.09.047
- G. Herdrich et al., Plasma Thruster, 215, 245 (2024). https://doi.org/10.1016/j.actaastro.2023.11.009
- P. Zheng, J. Wu, Y. Zhang, Y. Zhao. Vacuum, 195, 110652 (2021). https://doi.org/10.1016/j.vacuum.2021.110652
- T. Andreussi, E. Ferrato, V. Giannetti. J. Electr. Propuls., 9, 1 (2022). https://doi.org/10.1007/s44205-022-00024-9
- E.A. Kralkina, K.V. Vavilin, I.I. Zadiriev, P.A. Nekliudova, G.V. Shvydkiy. Vacuum, 167, 136 (2019). https://doi.org/10.1016/j.vacuum.2019.05.041
- D.M. Goebel, I. Katz. Fundamentals of Electric Propulsion: Ion and Hall Thrusters (John Wiley \& Sons, 2008), http://onlinelibrary.wiley.com/book/10.1002/9780470436448
- B. Lotz. Plasma physical and material physical aspects of the application of atmospheric gases as a propellant for Ion-Thruster of the RIT-Type (Inaugural dissertation to graduate to the doctor's degree in natural sciences at the Justus-Liebig-University of Giessen, May 2013)
- M. Tisaev, E. Ferrato, V. Giannetti, C. Paissoni, N. Baresi, A. Lucca Fabris, T. Andreussi. Acta Astronaut., 191, 374 (2022). https://doi.org/10.1016/j.actaastro.2021.11.011
- G. Koppenwallner. AIP Conf. Proceed., 1333, 1307 (2011). https://doi.org/10.1063/1.3562824
- Y. Ko, S. Kim, G. Moon, M. Yi, K. Park, Y. Kim, E. Jun. Acta Astronaut., 212, 198 (2023). https://doi.org/10.1016/j.actaastro.2023.07.043
- E. Kralkina. UFN, 178 (5), 519 (2008) (in Russian). https://doi.org/10.3367/UFNr.0178.200805f.0519
- V.S. Dudin, K.V. Vavilin, I.I. Zadiriev, S.A. Dvinin, E.A. Kralkina, E.Yu. Loktionov, A.M. Nikonov, G.V. Shvydky. Prikladnaya fizika, (in print)
- Yukikazu, Itikawa. J. Phys. Chem. Ref. Data, 35, 31 (2006). https://doi.org/10.1063/1.1937426
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.