Theory of the structure of icosahedral quasicrystals: general principles
Madison A. E. 1, Madison P. A. 1,2
1HSE University, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: alex_madison@mail.ru

PDF
A unified theory of the structure of icosahedral quasicrystals is proposed, within the framework of which it is possible to describe all three types of quasilattices (P, I, F) and both icosahedral symmetry groups. The theory is based on the combined use of three types of tilings, each of which is characterized by its own basis set of unit cells and its own substitution rules. By analogy with ordinary crystals, the problem of describing the structure of a quasicrystal splits into two stages: filling space with cells and filling cells with atoms, with the only difference that instead of one elementary cell, cells of several types are used, and to fill space with cells, instead of translations, an iterative algorithm of inflation and deflation is used. Keywords: icosahedral quasicrystals, substitution rules, packings.
  1. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn. Phys. Rev. Lett., 53, 70 (1984). DOI: 10.1103/PhysRevLett.53.1951
  2. R. Daw. Nature, 511 (Suppl 7509), 18 (2014). DOI: 10.1038/nature13366
  3. A.L. Mackay. Physica A, 114, 609 (1982). DOI: 10.1016/0378-4371(82)90359-4
  4. D. Levine, P.J. Steinhardt. Phys. Rev. B, 34, 596 (1986). DOI: 10.1103/PhysRevB.34.596
  5. J.E.S. Socolar, P.J. Steinhardt. Phys. Rev. B, 34, 617 (1986). DOI: 10.1103/PhysRevB.34.617
  6. W. Steurer. Acta Cryst. A, 74, 1 (2018). DOI: 10.1107/S2053273317016540
  7. L.S. Levitov, J. Rhyner. JETP Lett., 47 (12), 760 (1988). http://jetpletters.ru/ps/1099/article_16620.pdf
  8. L.S. Levitov, J. Rhyner. J. Phys. France, 49, 1835 (1988). DOI: 10.1051/jphys:0198800490110183500
  9. V.Ya. Shevchenko, A.E. Madison, A.L. Mackay. Acta Cryst. A, 63, 172 (2007). DOI: 10.1107/S0108767307002723
  10. L. Danzer. Discrete Math., 76 (1), 1 (1989). DOI: 10.1016/0012-365X(89)90282-3
  11. L. Danzer, Z. Papadopolos, A. Talis. Int. J. Mod. Phys. B, 7 (6-7), 1379 (1993). DOI: 10.1142/S0217979293002389
  12. M. Senechal. Quasicrystals and geometry (Cambridge University Press, Cambridge, 1995)
  13. A.E. Madison. Tech. Phys. Lett., 50 (10), 13 (2024). DOI: 10.61011/PJTF.2024.19.58650.19962
  14. P. Kramer, R. Neri. Acta Cryst. A, 40, 580 (1984). DOI: 10.1107/S0108767384001203
  15. S. van Smaalen, J.L. de Boer, Y. Shen. Phys. Rev. B, 43, 929 (1991). DOI: 10.1107/S2053273319017339
  16. I. Buganski, J. Wolny, H. Takakura. Acta Cryst. A, 76, 180 (2020). DOI: 10.1103/PhysRevB.43.929
  17. M. de Boissieu. Chem. Soc. Rev., 41, 6778 (2012). DOI: 10.1039/C2CS35212E
  18. E. Abe, Y. Yan, S. Pennycook. Nature Mater., 3, 759 (2004). DOI: 10.1038/nmat1244
  19. M. Duneau, D. Gratias. In: Coverings of Discrete Quasiperiodic Sets, ed. P. Kramer, Z. Papadopolos (Springer Tracts in Modern Physics, Springer, Berlin, Heidelberg, 2002), v. 180, p. 23, DOI: 10.1007/3-540-45805-0_2
  20. A.P. Tsai. Sci. Technol. Adv. Mater., 9, 013008 (2008). DOI: 10.1088/1468-6996/9/1/013008
  21. P. Guyot, M. Audier. C. R. Phys., 15, 12 (2014). DOI: 10.1016/j.crhy.2013.10.005
  22. S. Lidin. In: Handbook of Solid State Chemistry, ed. by R. Dronskowski, S. Kikkawa, A. Stein (Wiley-VCH, Weinheim, 2017), p. 73, DOI: 10.1002/9783527691036.hsscvol1002
  23. W. Steurer, T. Haibach. In: International Tables for Crystallography Volume B: Reciprocal Space, ed. by U. Shmueli (Springer, Dordrecht, 2006), v. B, Ch. 4.6, p. 486. DOI: 10.1107/97809553602060000568
  24. W. Steurer, S. Deloudi. Crystallography of quasicrystals. Concepts, methods and structures (Springer, Berlin-Heidelberg, 2009), DOI: 10.1007/978-3-642-01899-2
  25. A. Yamamoto, H. Takakura, A.P. Tsai. Phys. Rev. B, 68, 094201 (2003). DOI: 10.1103/PhysRevB.68.094201
  26. H. Takakura, C. Pay Gomez, A. Yamamoto, M. de Boissieu, A.P. Tsai. Nature Mater., 6, 58 (2007). DOI: 10.1038/nmat1799
  27. T. Yamada, H. Takakura, H. Euchner, C. Pay Gomez, A. Bosak, P. Fertey, M. de Boissieu. IUCrJ, 3, 247 (2016). DOI: 10.1107/S2052252516007041
  28. M. Mihalkoviv c, M. Widom. Phil. Mag., 86 (3-5), 519 (2006). DOI: 10.1080/14786430500333356
  29. M. Baake, U. Grimm. Acta Cryst. A, 76, 559 (2020). DOI: 10.1107/S2053273320007421
  30. M. Senechal. Proc. Steklov Inst. Math., 288, 259 (2015). DOI: 10.1134/S0081543815010204
  31. A.R. McGurn. Introduction to Photonic and Phononic Crystals and Metamaterials (Springer, Cham, 2020), DOI: 10.1007/978-3-031-02384-2
  32. A. Poddubny, E. Ivchenko. Phys. E: Low-Dimens. Syst. Nanostructures, 42, 1871 (2010). DOI: 10.1016/j.physe.2010.02.020
  33. Y. Nagaoka, J. Schneider, H. Zhu, O. Chen. Matter., 6, 30 (2023). DOI: 10.1016/j.matt.2022.09.027
  34. W. Steurer. Angew. Chem. Int. Ed., 50, 10775 (2011). DOI: 10.1002/anie.201107163
  35. R.L. Harlow. J. Res. Natl. Inst. Stand. Technol., 103, 327 (1996). DOI: 10.6028/jres.101.034
  36. A.E. Madison. RSC Adv., 5, 5745 (2015). DOI: 10.1039/C4RA09524C
  37. A.E. Madison. RSC Adv., 5, 79279 (2015). DOI: 10.1039/C5RA13874D
  38. A.E. Madison, P.A. Madison. Struct. Chem., 31, 485 (2020). DOI: 10.1007/s11224-019-01430-w
  39. A.E. Madison, P.A. Madison, V.A. Moshnikov. Tech. Phys., 69 (4), 528 (2024)
  40. A. Al-Siyabi, N. Ozdes Koca, M. Koca. Symmetry, 12, 1983 (2020). DOI: 10.3390/sym12121983
  41. P. Kramer, Z. Papadopolos, M. Schlottmann, D. Zeidler. J. Phys. A: Math. Gen., 27, 4505 (1994). DOI: 10.1088/0305-4470/27/13/024
  42. P. Kramer, Z. Papadopolos, D. Zeidler. In: Symmetries in science V, ed. by B. Gruber, L.C. Biedenharn, H.D. Doebner (Springer, Boston, 1991), p. 395. DOI: 10.1007/978-1-4615-3696-3_19
  43. J.C. Baez. Not. Am. Math. Soc., 70, 821 (2023). DOI: 10.1090/noti2685
  44. R. Mosseri, J.F. Sadoc. In: The Structure of Non-Crystalline Materials, 1982: Proc. 2nd Int. Conf., Cambridge, 12-15 July 1982, ed. by P.H. Gaskell, J.M. Parker, E.A. Davis (London, NY., Taylor \& Francis, 1982), p. 137, ISBN: 978-0800230777
  45. N. Ozdes Koca, R. Koc, M. Koca, A. Al-Siyabi. Acta Crystallogr. A, 77 (2), 105 (2021). DOI: 10.1107/S2053273320015399
  46. P. Kramer, Z. Papadopolos. Can. J. Phys., 72, 408 (1994). DOI: 10.1139/p94-057
  47. M. Bruckner. Vielecke und Vielflache --- Theorie und Geschichte (Leipzig, Teubner, 1900) M. Bruckner. Vielecke und Vielflache --- Theorie und Geschichte. Classic Reprint Series (London, Forgotten Books, 2018)
  48. D. Schattschneider. In: Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. by S. Goldstine, D. McKenna, K. Fenyvesi (Phoenix, Tessellations Publishing, 2019), p. 347.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru