Experimental study of heat transfer in the front separation region during the interaction of a supersonic flow with a cylinder
Popov P.A.
1, Kolesnik E.V.
2, Monakhov N.A.
1, Masyukevich A.V.
1,2, Babich E.V.
21Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: pavel.popov@mail.ioffe.ru, kolesnik.ev1@spbstu.ru, nikolay.monakhov@mail.ioffe.ru, masyukav@mail.ioffe.ru, lll.helen.lll@mail.ru
The paper presents the results of an experimental study of the interaction of a supersonic flow behind an incident shock wave with a cylindrical obstacle and a boundary layer developing on the inner surface of a driven section of the rectangular shock tube. It is shown that this approach allows one to study the features of non-stationary heat transfer in the front separation region at a supersonic flow enthalpy of ~3 MJ/kg and a stagnation temperature of ~2500 K. Spatial and temporal distributions of pressure and heat flux in the front separation region are obtained. The structure and dynamics of the interaction region are studied using shadow photography. Keywords: shock tube, shadow photography, heat flux, boundary layer, shock wave, viscous-inviscid interaction, horseshoe vortices.
- D.S. Dolling. AIAA J., 39 (8), 1517 (2001). DOI: 10.2514/2.1476
- H. Babinsky, J. Harvey. Shock Wave-Boundary-Layer Interactions (Cambridge University Press, 2011)
- D.G. Gaitonde. Prog. Aerosp. Sci., 72, 80 (2015). DOI: 10.1016/j.paerosci.2014.09.002
- K. Sabnis, H. Babinsky. Prog. Aerosp. Sci., 143, 100953 (2023). DOI: 10.1016/j.paerosci.2023.100953
- D.V. Gaitonde, M.C. Adler. Annu. Rev. Fluid Mech., 55, 291 (2023). DOI: 10.1146/annurev-fluid-120720-022542
- C.S. Kumar, K.P.J. Reddy. J. Heat Transfer., 135, 121701 (2013). DOI: 10.1115/1.4024667
- C.S. Kumar, T. Singh, K.P.J. Reddy. Phys. Fluids., 26, 126101 (2014). DOI: 10.1063/1.4902400
- C.S. Kumar, K.P.J. Reddy. AIAA J., 52 (4), 747 (2014). DOI: 10.2514/1.J052658
- D. Gang, S. Yi, L. He. J. Vis., 19, 581 (2016). DOI: 10.1007/s12650-016-0354-x
- V.Ya. Borovoy, E.G. Zaitsev, V.E. Mosharov, V.N. Radchenko. Uchenye zapiski TsaGI, 52 (4), 3 (2021) (in Russian)
- S.A. Lindorfer, C.S. Combs, P.A. Kreth, R.B. Bond, J.D. Schmisseur. Shock Waves., 30, 395 (2020). DOI: 10.1007/s00193-020-00938-z
- C. Combs, P. Kreth, J. Schmisseur, E. Lash. AIAA J., 56 (3), 1288 (2018). DOI: 10.2514/1.J056390
- O.R. Tutty, G.T. Roberts, P.H. Schuricht. J. Fluid Mech., 737, 19 (2013). DOI: 10.1017/jfm.2013.541
- H. Ngoh, J. Poggie. Phys. Rev. Fluids., 7 (2022). DOI: 10.1103/PhysRevFluids.7.093903
- P. Schuricht, G. Roberts. Proceedings of 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 1998, AIAA Paper 98-1579. DOI: 10.2514/6.1998-1579
- M. Hemsh, J. Nielsen. Aerodinamika raket (Mir, M., 1989) (in Russian)
- V.Ya. Borovoy, I.V. Egorov, V.E. Mosharov, A.S. Skuratov, V.N. Radchenko Experimentalny nagrev tel v giperzvukovom potoke. Gasodinamicheskie yavlenia i ikh kharakteristiki (Nauka, M., 2018)
- V.Ya. Borovoy, V.E. Mosharov, A.Yu. Noev, V.N. Radchenko. Izvestiya RAN. MZhG, 3, 58 (2009) (in Russian)
- G. Sangdi, H. Olivier. Progress in Aerospace Sci., 113, 100607 (2020). DOI: 10.1016/j.paerosci.2020.100607
- P. Reynier, Progress in Aerospace Sci., 85, 1 (2016). DOI: 10.1016/j.paerosci.2016.04.002
- S.A. Maszkiewicz, G.I. Gillespie, S.J. Laurence. Proceedings of AIAA SCITECH Forum, 2022, AIAA Paper 2022-1818. DOI: 10.2514/6.2022-1818
- G. Sangdi, H. Olivier, C.-Y. Wen. Phys. Fluids, 34, 056103 (2022). DOI: 10.1063/5.0089120
- H. Ozawa, S.J. Laurence. J. Fluid Mechan., 849, 1009 (2018). DOI: 10.1017/jfm.2018.433
- W. Dagao, G. Han, M. Liu, Z. Li, Z. Jiang. Phys. Fluids, 36, 076125 (2024). DOI: 10.1063/5.0219298
- S.Z. Sapozhnikov, V.Yu. Mityakov, A.V. Mityakov. Heatmetry: The Science and Practice of Heat Flux Measurement: Heat and Mass Transfer. (Springer International Publishing, 2020)
- P.A. Popov, N.A. Monakhov, T.A. Lapushkina, S.A. Poniaev. Tech. Phys., 67 (9), 1144 (2022). DOI: 10.21883/TP.2022.09.54677.54-22
- P.A. Popov, S.V. Bobashev, B.I. Reznikov, V.A. Sakharov. Tech. Phys. Lett., 44 (4), 316 (2018). DOI: 10.1134/S1063785018040235
- P.A. Popov, N.A. Monakhov, T.A. Lapushkina, S.A. Poniaev, R.O. Kurakin. Tech. Phys. Lett., 48 (10), 46 (2022). DOI: 10.21883/TPL.2022.10.54798.19297
- P.A. Popov, A.V. Masyukevich, E.V. Kolesnikov, A.B. Podlaskin. Pis'ma v ZhTF, 50 (12), 36 (2024) (in Russian). DOI: 10.61011/PJTF.2024.12.58063.19882
- Electronic source. GDTk --- a collection of software for doing gas dynamics, from simple desktop calculations through to simulations on supercomputers. Available at: https://gdtk.uqcloud.net (Date of access 02/10/2024)
- T.V. Bazhenova, L.G. Gvozdeva. Nestazionarniye vzaimodeistvia udarnykh voln (Nauka, M., 1977) (in Russian)
- S. Janardhanraj, K. Abhishek, G. Jagadeesh. J. Fluid Mech., 910 (A3), 1 (2021). DOI: 10.1017/jfm.2020.914
- W.R. Davies, L. Bernstein. J. Fluid Mech., 36 (1), 87 (1969). DOI: 10.1017/S0022112069001534
- H. Knauss, T. Roediger, D. Bountin, B. Smorodsky, A. Maslov, J. Srulijes. J. Spacecr. Rockets., 46 (2), 255 (2009). DOI: 10.2514/1.32011
- R.A. Hartunian, A.L. Russo, P.V. Marrone. J. Aeronautical Sci., 27 (8), 587 (1960). DOI: 10.2514/8.8656
- V.Ya. Borovoi, M.V. Ryzhkova. Izv. AN SSSR. MZhG, 1, 78-87 (1974) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.