Experimental study of heat transfer in the front separation region during the interaction of a supersonic flow with a cylinder
Popov P.A. 1, Kolesnik E.V. 2, Monakhov N.A. 1, Masyukevich A.V.1,2, Babich E.V.2
1Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: pavel.popov@mail.ioffe.ru, kolesnik.ev1@spbstu.ru, nikolay.monakhov@mail.ioffe.ru, masyukav@mail.ioffe.ru, lll.helen.lll@mail.ru

PDF
The paper presents the results of an experimental study of the interaction of a supersonic flow behind an incident shock wave with a cylindrical obstacle and a boundary layer developing on the inner surface of a driven section of the rectangular shock tube. It is shown that this approach allows one to study the features of non-stationary heat transfer in the front separation region at a supersonic flow enthalpy of ~3 MJ/kg and a stagnation temperature of ~2500 K. Spatial and temporal distributions of pressure and heat flux in the front separation region are obtained. The structure and dynamics of the interaction region are studied using shadow photography. Keywords: shock tube, shadow photography, heat flux, boundary layer, shock wave, viscous-inviscid interaction, horseshoe vortices.
  1. D.S. Dolling. AIAA J., 39 (8), 1517 (2001). DOI: 10.2514/2.1476
  2. H. Babinsky, J. Harvey. Shock Wave-Boundary-Layer Interactions (Cambridge University Press, 2011)
  3. D.G. Gaitonde. Prog. Aerosp. Sci., 72, 80 (2015). DOI: 10.1016/j.paerosci.2014.09.002
  4. K. Sabnis, H. Babinsky. Prog. Aerosp. Sci., 143, 100953 (2023). DOI: 10.1016/j.paerosci.2023.100953
  5. D.V. Gaitonde, M.C. Adler. Annu. Rev. Fluid Mech., 55, 291 (2023). DOI: 10.1146/annurev-fluid-120720-022542
  6. C.S. Kumar, K.P.J. Reddy. J. Heat Transfer., 135, 121701 (2013). DOI: 10.1115/1.4024667
  7. C.S. Kumar, T. Singh, K.P.J. Reddy. Phys. Fluids., 26, 126101 (2014). DOI: 10.1063/1.4902400
  8. C.S. Kumar, K.P.J. Reddy. AIAA J., 52 (4), 747 (2014). DOI: 10.2514/1.J052658
  9. D. Gang, S. Yi, L. He. J. Vis., 19, 581 (2016). DOI: 10.1007/s12650-016-0354-x
  10. V.Ya. Borovoy, E.G. Zaitsev, V.E. Mosharov, V.N. Radchenko. Uchenye zapiski TsaGI, 52 (4), 3 (2021) (in Russian)
  11. S.A. Lindorfer, C.S. Combs, P.A. Kreth, R.B. Bond, J.D. Schmisseur. Shock Waves., 30, 395 (2020). DOI: 10.1007/s00193-020-00938-z
  12. C. Combs, P. Kreth, J. Schmisseur, E. Lash. AIAA J., 56 (3), 1288 (2018). DOI: 10.2514/1.J056390
  13. O.R. Tutty, G.T. Roberts, P.H. Schuricht. J. Fluid Mech., 737, 19 (2013). DOI: 10.1017/jfm.2013.541
  14. H. Ngoh, J. Poggie. Phys. Rev. Fluids., 7 (2022). DOI: 10.1103/PhysRevFluids.7.093903
  15. P. Schuricht, G. Roberts. Proceedings of 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 1998, AIAA Paper 98-1579. DOI: 10.2514/6.1998-1579
  16. M. Hemsh, J. Nielsen. Aerodinamika raket (Mir, M., 1989) (in Russian)
  17. V.Ya. Borovoy, I.V. Egorov, V.E. Mosharov, A.S. Skuratov, V.N. Radchenko Experimentalny nagrev tel v giperzvukovom potoke. Gasodinamicheskie yavlenia i ikh kharakteristiki (Nauka, M., 2018)
  18. V.Ya. Borovoy, V.E. Mosharov, A.Yu. Noev, V.N. Radchenko. Izvestiya RAN. MZhG, 3, 58 (2009) (in Russian)
  19. G. Sangdi, H. Olivier. Progress in Aerospace Sci., 113, 100607 (2020). DOI: 10.1016/j.paerosci.2020.100607
  20. P. Reynier, Progress in Aerospace Sci., 85, 1 (2016). DOI: 10.1016/j.paerosci.2016.04.002
  21. S.A. Maszkiewicz, G.I. Gillespie, S.J. Laurence. Proceedings of AIAA SCITECH Forum, 2022, AIAA Paper 2022-1818. DOI: 10.2514/6.2022-1818
  22. G. Sangdi, H. Olivier, C.-Y. Wen. Phys. Fluids, 34, 056103 (2022). DOI: 10.1063/5.0089120
  23. H. Ozawa, S.J. Laurence. J. Fluid Mechan., 849, 1009 (2018). DOI: 10.1017/jfm.2018.433
  24. W. Dagao, G. Han, M. Liu, Z. Li, Z. Jiang. Phys. Fluids, 36, 076125 (2024). DOI: 10.1063/5.0219298
  25. S.Z. Sapozhnikov, V.Yu. Mityakov, A.V. Mityakov. Heatmetry: The Science and Practice of Heat Flux Measurement: Heat and Mass Transfer. (Springer International Publishing, 2020)
  26. P.A. Popov, N.A. Monakhov, T.A. Lapushkina, S.A. Poniaev. Tech. Phys., 67 (9), 1144 (2022). DOI: 10.21883/TP.2022.09.54677.54-22
  27. P.A. Popov, S.V. Bobashev, B.I. Reznikov, V.A. Sakharov. Tech. Phys. Lett., 44 (4), 316 (2018). DOI: 10.1134/S1063785018040235
  28. P.A. Popov, N.A. Monakhov, T.A. Lapushkina, S.A. Poniaev, R.O. Kurakin. Tech. Phys. Lett., 48 (10), 46 (2022). DOI: 10.21883/TPL.2022.10.54798.19297
  29. P.A. Popov, A.V. Masyukevich, E.V. Kolesnikov, A.B. Podlaskin. Pis'ma v ZhTF, 50 (12), 36 (2024) (in Russian). DOI: 10.61011/PJTF.2024.12.58063.19882
  30. Electronic source. GDTk --- a collection of software for doing gas dynamics, from simple desktop calculations through to simulations on supercomputers. Available at: https://gdtk.uqcloud.net (Date of access 02/10/2024)
  31. T.V. Bazhenova, L.G. Gvozdeva. Nestazionarniye vzaimodeistvia udarnykh voln (Nauka, M., 1977) (in Russian)
  32. S. Janardhanraj, K. Abhishek, G. Jagadeesh. J. Fluid Mech., 910 (A3), 1 (2021). DOI: 10.1017/jfm.2020.914
  33. W.R. Davies, L. Bernstein. J. Fluid Mech., 36 (1), 87 (1969). DOI: 10.1017/S0022112069001534
  34. H. Knauss, T. Roediger, D. Bountin, B. Smorodsky, A. Maslov, J. Srulijes. J. Spacecr. Rockets., 46 (2), 255 (2009). DOI: 10.2514/1.32011
  35. R.A. Hartunian, A.L. Russo, P.V. Marrone. J. Aeronautical Sci., 27 (8), 587 (1960). DOI: 10.2514/8.8656
  36. V.Ya. Borovoi, M.V. Ryzhkova. Izv. AN SSSR. MZhG, 1, 78-87 (1974) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru