Heat transfer enhancement in an inclined boomerang groove on a heated channel wall with the end portion oriented along the flow
Isaev S. A.1,2, Nikushchenko D. V.1, Popov I. A.3, Mironov A. A.3, Klyus A. A.4, Sudakov A. G.4
1State Marine Technical University, St. Petersburg, Russia
2Novikov St. Petersburg State University of Civil Aviation, St. Petersburg, Russia
3Tupolev Kazan National Research Technical University (KAI), Kazan, Tatarstan, Russia
4St. Petersburg State University of Civil Aviation, St. Petersburg, Russia
Email: isaev3612@yandex.ru

PDF
An anomalous intensification of the separated turbulent flow and heat transfer in inclined straight grooves on the channel wall and plate is characterized by weakening of vortex structures and suppression of heat transfer in the end part of the groove. It has been established that the fracture of the groove end part oriented along the flow in the channel with its optimal relative length leads to penetration of an intense swirling flow into the groove end zone and intensifies heat transfer in it. Relative heat transfer from the surface inside such a boomerangtype groove increases by 1.2 times compared to that in the straight inclined groove. Keywords: separated flow, narrow channel, inclined boomerang groove, intensification, numerical modeling.
  1. S. Rashidi, F. Hormozi, B. Sunden, O. Mahian, Appl. Energy, 259, 1491 (2019). DOI: 10.1016/j.apenergy.2019.04.168
  2. Y. Rao, B. Li, Y. Feng, Exp. Therm. Fluid Sci., 61, 201 (2015). DOI: 10.1016/j.expthermflusci.2014.10.030
  3. Y. Chen, Y.T. Chew, B.C. Khoo, Int. J. Heat Mass Transfer, 55, 8100 (2012). DOI: 10.1016/j.ijheatmasstransfer.2012.08.043
  4. C.N. Jordan, L.M. Wright, J. Turbomach., 135, 011028 (2013). DOI: 10.1115/1.4006422
  5. P. Zhang, Y. Rao, P.M. Ligrani, Int. J. Therm. Sci., 177, 107581 (2022). DOI: 10.1016/j.ijthermalsci.2022.107581
  6. S.A. Isaev, M.S. Gritckevich, A.I. Leontiev, O.O. Milman, D.V. Nikushchenko, Int. J. Heat Mass Transfer, 145, 118737 (2019). DOI: 10.1016/j.ijheatmasstransfer.2019.118737
  7. S.A. Isaev, Fluid Dyn., 57 (5), 558 (2022). DOI: 10.1134/S0015462822050081
  8. S.A. Isaev, S.V. Guvernyuk, D.V. Nikushchenko, A.G. Sudakov, A.A. Sinyavin, E.B. Dubko, Tech. Phys. Lett., 49 (8), 33 (2023). DOI: 10.61011/TPL.2023.08.56684.19560
  9. S.A. Isaev, S.Z. Sapozhnikov, D.V. Nikushchenko, V.Yu. Mityakov, V.V. Seroshtanov, E.B. Dubko, Fluid Dyn., 59 (1), 45 (2024). DOI: 10.1134/S0015462823602310
  10. M.A. Zubin, A.F. Zubkov, Fluid Dyn., 57 (1), 77 (2022). DOI: 10.1134/S0015462822010128
  11. S.A. Isaev, A.G. Sudakov, D.V. Nikushchenko, V.B. Kharchenko, L.P. Iunakov, Fluid Dyn., 58 (6), 1004 (2023). DOI: 10.1134/S0015462823601304

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru