Interaction of silicon vacancies in silicon carbide
Kukushkin S. A. 1, Osipov A. V. 1
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
Email: andrey.v.osipov@gmail.com

PDF
The density functional theory is used to show that negatively charged silicon vacancies in silicon carbide produced from silicon by the vacancy mechanism of coordinated substitution of atoms (VMCSA) are attracted to each other in the < 110> direction. The nature of the attraction is that the carbon atoms with broken bonds repulse from the vacancies and come closer to each other, forming new C-C bonds. As a result, silicon vacancies line up in vacancy strings in the < 110> direction, which significantly decreases the total energy. It is also found that the decrease in the length of stretched C-C bonds during electron localization leads to the effect of negative correlation energy of electrons localized on vacancies. Keywords: silicon carbide, silicon vacancies, negative-U properties, magnetic moment.
  1. J. Fan, P.K. Chu, Silicon carbide nanostructures: fabrication, structure, and properties (Springer, Heidelberg, 2014)
  2. T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology (Wiley, Singapore, 2014)
  3. L. Gordon, A. Janotti, C.G. Van de Walle, Phys. Rev. B, 92, 045208 (2015). DOI: 10.1103/PhysRevB.92.045208
  4. K. Mochizuki, Vertical GaN and SiC power devices (Artech House, Norwood, 2018)
  5. Wide bandgap semiconductors, ed. by K. Takahashi, A. Yoshikawa, A. Sandhu (Springer, Berlin, 2007)
  6. S.A. Kukushkin, A.V. Osipov, Russ. J. Gen. Chem., 92, 584 (2022). DOI: 10.1134/S1070363222040028
  7. S.A. Kukushkin, A.V. Osipov, Kondens. Sredy Mezhfaznye Granitsy, 24 (4), 407 (2022) (in Russian). DOI: 10.17308/kcmf.2022.24/10549
  8. S.A. Kukushkin, A.V. Osipov, Physica B, 512, 26 (2017). DOI: 10.1016/j.physb.2017.02.018
  9. S.A. Kukushkin, A.V. Osipov, Materials, 15, 4653 (2022). DOI: 10.3390/ma15134653
  10. A.S. Grashchenko, S.A. Kukushkin, A.V. Osipov, A.V. Redkov, Catal. Today, 397- 399, 375 (2022). DOI: 10.1016/j.cattod.2021.08.012
  11. N. Iwamoto, B.G. Svensson, Semicond. Semimet., 91, 369 (2015). DOI: 10.1016/bs.semsem.2015.02.001
  12. M. Bockstedte, A. Mauttausch, O. Pankratov, Phys. Rev. B, 68, 205201 (2003). DOI: 10.1103/PhysRevB.68.205201
  13. E.M.Y. Lee, A. Yu, J.J. de Pablo, G. Galli, Nature Commun., 12, 6325 (2021). DOI: 10.1038/s41467-021-26419-0
  14. G. Kresse, D. Joubert, Phys. Rev. B, 59, 1758 (1999). DOI: 10.1103/PhysRevB.59.1758
  15. J.G. Lee, Computational materials science (CRS Press, Boca Raton, 2017)
  16. G. Kresse, J. Furthmuller, Phys. Rev. B, 54, 11169 (1996). DOI: 10.1103/PhysRevB.54.11169
  17. G.V. Benemanskaya, P.A. Dement'ev, S.A. Kukushkin, A.V. Osipov, S.N. Timoshnev, Tech. Phys. Lett., 45, 201 (2019). DOI: 10.1134/S1063785019030039
  18. P.W. Anderson, Phys. Rev. Lett., 34, 953 (1975). DOI: 10.1103/PhysRevLett.34.953
  19. N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, V.V. Romanov, L.E. Klyachkin, A.M. Malyarenko, V.S. Khromov, Semiconductors, 55, 137 (2021). DOI: 10.1134/S106378262102007X.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru