Operating regimes and structure of an atmospheric-pressure interelectrode microwave discharge in argon
Antipov S. N. 1, Gadzhiev M. Kh. 1, Il'ichev M. V. 1, Tyuftyaev A. S. 1, Chepelev V. M. 1, Yusupov D. I. 1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: antipov@ihed.ras.ru, makhach@mail.ru, imvpl@mail.ru, astpl@mail.ru, chepelev@ihed.ras.ru, yusupovdi@ihed.ras.ru

PDF
Continuous and pulse-periodic operating regimes and spatio-temporal structure of an atmospheric-pressure interelectrode microwave discharge in transverse argon flow were experimentally investigated for a hemisphere-to-plate electrodes configuration. A multielectrode plasma torch with a power of ~ 100 W was used as a gas-discharge device, electromagnetic energy to which was supplied from a waveguide-type microwave plasmatron operating on the basis of a magnetron with a frequency of 2.45 GHz. The discharge regime switching were carried out using a high-voltage three-phase magnetron power supply. In the continuous regime, fractal filamentation of near-electrode regions of a glow-type microwave discharge was described. Diagnostics of the regimes was conducted by floating potential oscillography of the microwave discharge flowing afterglow (cold plasma jet). Keywords: microwave plasmatron, atmospheric-pressure glow discharge, plasma diagnostics, discharge filamentation.
  1. V.A. Trubnikov. Fizicheskaya entsiklopediya (Bol'shaya Ross. Entsikl., M., 1992), Vol. 3, p. 327 (in Russian)
  2. A.M. Kutepov, A.G. Zakharov, A.I. Maksimov. Vakuumno-plazmennoe i plazmenno-rastvornoe modifitsirovanie polimernykh materialov (Nauka, M., 2004) (in Russian)
  3. S. Vepv rek, C. Eckmann, J.T. Elmer. Plasma Chem. Plasma Process., 8, 445 (1988). DOI: 10.1007/BF01016059
  4. P. Favia, R. d'Agostino. Surf. Coat. Technol., 98 (1-3), 1102 (1998). DOI: 10.1016/S0257-8972(97)00285-5
  5. M. Dhayal, M.R. Alexander, J.W. Bradley. Appl. Surf. Sci., 252 (22), 7957 (2006). DOI: 10.1016/j.apsusc.2005.10.005
  6. Y. Deslandes, G. Pleizier, E. Poire, S. Sapieha, M.R. Wertheimer, E. Sacher. Plasmas Polym., 3, 61 (1998). DOI: 10.1023/B:PAPO.0000005939.84830.44
  7. N. Puav c, Z.L. Petrovic, M. Radetic, A. Djordjevic. In Materials Science Forum (Trans. Tech. Publications Ltd, 2005), v. 494, p. 291. DOI: 10.4028/www.scientific.net/MSF.494.291
  8. A.I. Al-Shamma'a, S.R. Wylie, J. Lucas, J.D. Yan. IEEE Trans. Plasma Sci., 30 (5), 1863 (2002). DOI: 10.1109/TPS.2002.805371
  9. J. Hnilica, L. Potov cv nakova, M. Stupavsk., V. Kudrle. Appl. Surf. Sci., 288, 251 (2014). DOI: 10.1016/j.apsusc.2013.10.016
  10. N. Srivastava, W. Chuji. Plasma Sci. Technol., 21 (11), 115401 (2019). DOI: 10.1088/2058-6272/ab3248
  11. J. Zhao, L. Nie. Phys. Plasmas, 26 (7), 073503 (2019). DOI: 10.1063/1.5092840
  12. M. Narimisa, F. Krv cma, Y. Onyshchenko, Z. Kozakova, R. Morent, N. De Geyter. Polymers, 12 (2), 354 (2020). DOI: 10.3390/polym12020354
  13. S. Tiwari, A. Caiola, X. Bai, A. Lalsare, J. Hu. Plasma Chem. Plasma Process., 40, 1 (2020). DOI: 10.1007/s11090-019-10040-7
  14. J. Batur, Z. Duan, M. Jiang, R. Li, Y. Xie, X.F. Yu, J.R. Li. Chem. Mater., 35 (10), 3867 (2023). DOI: 10.1021/acs.chemmater.2c03551
  15. X.P. Lu, Z.H. Jiang, Q. Xiong, Z.Y. Tang, X.W. Hu, Y. Pan. Appl. Phys. Lett., 92 (8), 081502 (2008). DOI: 10.1063/1.2883945
  16. R. Wang, H. Sun, W. Zhu, C. Zhang, S. Zhang, T. Shao. Phys. Plasmas, 24 (9), 093507 (2017). DOI: 10.1063/1.4998469
  17. M. Laroussi. Front. Phys., 8, 74 (2020). DOI: 10.3389/fphy.2020.00074
  18. Y. Yu, K. Huang, L. Wu. Phys. Rev. E, 102 (3), 031201 (2020). DOI: 10.1103/PhysRevE.102.031201
  19. H.Y. Kim, S.K. Kang, S.M. Park, H.Y. Jung, B.H. Choi, J.Y. Sim, J.K. Lee. Plasma Process. Polym., 12 (12), 1423 (2015). DOI: 10.1002/ppap.201500017
  20. G. Xia, Z. Chen, A.I. Saifutdinov, S. Eliseev, Y. Hu, A.A. Kudryavtsev. IEEE Trans. Plasma Sci., 42 (10), 2768 (2014). DOI: 10.1109/TPS.2014.2329899
  21. M. Laroussi, T. Akan. Plasma Process. Polym., 4 (9), 777 (2007). DOI: 10.1002/ppap.200700066
  22. M. Laroussi, X. Lu. Appl. Phys. Lett., 87 (11), 113902 (2005). DOI: 10.1063/1.2045549
  23. K. Yambe, S. Satou. Phys. Plasmas, 23 (2), 023509 (2016). DOI: 10.1063/1.4942170
  24. Q.Y. Nie, Z. Cao, C.S. Ren, D.Z. Wang, M.G. Kong. New J. Phys., 11 (11), 115015 (2009). DOI: 10.1088/1367-2630/11/11/115015
  25. J.Y. Kim, J. Ballato, S.O. Kim. Plasma Process. Polym., 9 (3), 253 (2012). DOI: 10.1002/ppap.201100190
  26. M. Ghasemi, P. Olszewski, J.W. Bradley, J.L. Walsh. J. Phys. D: Appl. Phys., 46 (5), 052001 (2013). DOI: 10.1088/0022-3727/46/5/052001
  27. R. Wang, H. Xu, Y. Zhao, W. Zhu, C. Zhang, T. Shao. Plasma Chem. Plasma Process., 39, 187 (2019). DOI: 10.1007/s11090-018-9929-8
  28. T. Shimizu, B. Steffes, R. Pompl, F. Jamitzky, W. Bunk, K. Ramrath, M. Georgi, W. Stolz, H.U. Schmidt, T. Urayama, S. Fujii, G.E. Morfill. Plasma Process. Polym., 5 (6), 577 (2008). DOI: 10.1002/ppap.200800021
  29. G. Isbary, J.L. Zimmermann, T. Shimizu, Y.F. Li, G.E. Morfill, H.M. Thomas, B. Steffes, J. Heinlin, S. Karrer, W. Stolz. Clin. Plasma Med., 1 (1), 19 (2013). DOI: 10.1016/j.cpme.2012.11.001
  30. T. Shimizu, Y. Ikehara. J. Phys. D: Appl. Phys., 50 (50), 503001 (2017). DOI: 10.1088/1361-6463/aa945e
  31. S. Arndt, A. Schmidt, S. Karrer, T. von Woedtke. Clin. Plasma Med., 9, 24 (2018). DOI: 10.1016/j.cpme.2018.01.002
  32. T. Shimizu. Jpn. J. Appl. Phys., 59 (12), 120501 (2020). DOI: 10.35848/1347-4065/abc3a0
  33. V.M. Chepelev, A.V. Chistolinov, M.A. Khromov, S.N. Antipov, M.K. Gadzhiev. J. Phys.: Conf. Ser., 1556 (1), 012091 (2020). DOI: 10.1088/1742-6596/1556/1/012091
  34. S.N. Antipov, M.A. Sargsyan, M.K. Gadzhiev. J. Phys.: Conf. Ser., 1698 (1), 012029 (2020). DOI: 10.1088/1742-6596/1698/1/012029
  35. S.N. Antipov, M.Kh. Gadzhiev, M.A. Sargsyan, D.V. Tereshonok, A.S. Tyuftyaev, D.I. Yusupov, A.V. Chistolinov, A.G. Abramov, A.V. Ugryumov. Phys. Scr., 98 (2), 025604 (2023). DOI: 10.1088/1402-4896/acae65
  36. S.N. Antipov, V.M. Chepelev, M.K. Gadzhiev, A.G. Abramov, A.V. Ugryumov. Plasma Phys. Rep., 49 (5), 559 (2023). DOI: 10.1134/S1063780X23600299
  37. D.A. Mansfeld, A.V. Vodopyanov, S.V. Sintsov, N.V. Chekmarev, E.I. Preobrazhensky, M.E. Viktorov. Tech. Phys. Lett., 49 (1), 36 (2023). DOI: 10.21883/TPL.2023.01.55345.19384
  38. I.A. Ivanov, V.N. Tikhonov, A.V. Tikhonov. J. Phys.: Conf. Ser., 1393 (1), 012042 (2019). DOI: 10.1088/1742-6596/1393/1/012042
  39. A.V. Chistolinov, R.V. Yakushin, M.A. Sargsyan, M.A. Khromov, A.S. Tyuftyaev. J. Phys.: Conf. Ser., 1394 (1), 012006 (2019). DOI: 10.1088/1742-6596/1394/1/012006

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru