Operating regimes and structure of an atmospheric-pressure interelectrode microwave discharge in argon
Antipov S. N.
1, Gadzhiev M. Kh.
1, Il'ichev M. V.
1, Tyuftyaev A. S.
1, Chepelev V. M.
1, Yusupov D. I.
11Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: antipov@ihed.ras.ru, makhach@mail.ru, imvpl@mail.ru, astpl@mail.ru, chepelev@ihed.ras.ru, yusupovdi@ihed.ras.ru
Continuous and pulse-periodic operating regimes and spatio-temporal structure of an atmospheric-pressure interelectrode microwave discharge in transverse argon flow were experimentally investigated for a hemisphere-to-plate electrodes configuration. A multielectrode plasma torch with a power of ~ 100 W was used as a gas-discharge device, electromagnetic energy to which was supplied from a waveguide-type microwave plasmatron operating on the basis of a magnetron with a frequency of 2.45 GHz. The discharge regime switching were carried out using a high-voltage three-phase magnetron power supply. In the continuous regime, fractal filamentation of near-electrode regions of a glow-type microwave discharge was described. Diagnostics of the regimes was conducted by floating potential oscillography of the microwave discharge flowing afterglow (cold plasma jet). Keywords: microwave plasmatron, atmospheric-pressure glow discharge, plasma diagnostics, discharge filamentation.
- V.A. Trubnikov. Fizicheskaya entsiklopediya (Bol'shaya Ross. Entsikl., M., 1992), Vol. 3, p. 327 (in Russian)
- A.M. Kutepov, A.G. Zakharov, A.I. Maksimov. Vakuumno-plazmennoe i plazmenno-rastvornoe modifitsirovanie polimernykh materialov (Nauka, M., 2004) (in Russian)
- S. Vepv rek, C. Eckmann, J.T. Elmer. Plasma Chem. Plasma Process., 8, 445 (1988). DOI: 10.1007/BF01016059
- P. Favia, R. d'Agostino. Surf. Coat. Technol., 98 (1-3), 1102 (1998). DOI: 10.1016/S0257-8972(97)00285-5
- M. Dhayal, M.R. Alexander, J.W. Bradley. Appl. Surf. Sci., 252 (22), 7957 (2006). DOI: 10.1016/j.apsusc.2005.10.005
- Y. Deslandes, G. Pleizier, E. Poire, S. Sapieha, M.R. Wertheimer, E. Sacher. Plasmas Polym., 3, 61 (1998). DOI: 10.1023/B:PAPO.0000005939.84830.44
- N. Puav c, Z.L. Petrovic, M. Radetic, A. Djordjevic. In Materials Science Forum (Trans. Tech. Publications Ltd, 2005), v. 494, p. 291. DOI: 10.4028/www.scientific.net/MSF.494.291
- A.I. Al-Shamma'a, S.R. Wylie, J. Lucas, J.D. Yan. IEEE Trans. Plasma Sci., 30 (5), 1863 (2002). DOI: 10.1109/TPS.2002.805371
- J. Hnilica, L. Potov cv nakova, M. Stupavsk., V. Kudrle. Appl. Surf. Sci., 288, 251 (2014). DOI: 10.1016/j.apsusc.2013.10.016
- N. Srivastava, W. Chuji. Plasma Sci. Technol., 21 (11), 115401 (2019). DOI: 10.1088/2058-6272/ab3248
- J. Zhao, L. Nie. Phys. Plasmas, 26 (7), 073503 (2019). DOI: 10.1063/1.5092840
- M. Narimisa, F. Krv cma, Y. Onyshchenko, Z. Kozakova, R. Morent, N. De Geyter. Polymers, 12 (2), 354 (2020). DOI: 10.3390/polym12020354
- S. Tiwari, A. Caiola, X. Bai, A. Lalsare, J. Hu. Plasma Chem. Plasma Process., 40, 1 (2020). DOI: 10.1007/s11090-019-10040-7
- J. Batur, Z. Duan, M. Jiang, R. Li, Y. Xie, X.F. Yu, J.R. Li. Chem. Mater., 35 (10), 3867 (2023). DOI: 10.1021/acs.chemmater.2c03551
- X.P. Lu, Z.H. Jiang, Q. Xiong, Z.Y. Tang, X.W. Hu, Y. Pan. Appl. Phys. Lett., 92 (8), 081502 (2008). DOI: 10.1063/1.2883945
- R. Wang, H. Sun, W. Zhu, C. Zhang, S. Zhang, T. Shao. Phys. Plasmas, 24 (9), 093507 (2017). DOI: 10.1063/1.4998469
- M. Laroussi. Front. Phys., 8, 74 (2020). DOI: 10.3389/fphy.2020.00074
- Y. Yu, K. Huang, L. Wu. Phys. Rev. E, 102 (3), 031201 (2020). DOI: 10.1103/PhysRevE.102.031201
- H.Y. Kim, S.K. Kang, S.M. Park, H.Y. Jung, B.H. Choi, J.Y. Sim, J.K. Lee. Plasma Process. Polym., 12 (12), 1423 (2015). DOI: 10.1002/ppap.201500017
- G. Xia, Z. Chen, A.I. Saifutdinov, S. Eliseev, Y. Hu, A.A. Kudryavtsev. IEEE Trans. Plasma Sci., 42 (10), 2768 (2014). DOI: 10.1109/TPS.2014.2329899
- M. Laroussi, T. Akan. Plasma Process. Polym., 4 (9), 777 (2007). DOI: 10.1002/ppap.200700066
- M. Laroussi, X. Lu. Appl. Phys. Lett., 87 (11), 113902 (2005). DOI: 10.1063/1.2045549
- K. Yambe, S. Satou. Phys. Plasmas, 23 (2), 023509 (2016). DOI: 10.1063/1.4942170
- Q.Y. Nie, Z. Cao, C.S. Ren, D.Z. Wang, M.G. Kong. New J. Phys., 11 (11), 115015 (2009). DOI: 10.1088/1367-2630/11/11/115015
- J.Y. Kim, J. Ballato, S.O. Kim. Plasma Process. Polym., 9 (3), 253 (2012). DOI: 10.1002/ppap.201100190
- M. Ghasemi, P. Olszewski, J.W. Bradley, J.L. Walsh. J. Phys. D: Appl. Phys., 46 (5), 052001 (2013). DOI: 10.1088/0022-3727/46/5/052001
- R. Wang, H. Xu, Y. Zhao, W. Zhu, C. Zhang, T. Shao. Plasma Chem. Plasma Process., 39, 187 (2019). DOI: 10.1007/s11090-018-9929-8
- T. Shimizu, B. Steffes, R. Pompl, F. Jamitzky, W. Bunk, K. Ramrath, M. Georgi, W. Stolz, H.U. Schmidt, T. Urayama, S. Fujii, G.E. Morfill. Plasma Process. Polym., 5 (6), 577 (2008). DOI: 10.1002/ppap.200800021
- G. Isbary, J.L. Zimmermann, T. Shimizu, Y.F. Li, G.E. Morfill, H.M. Thomas, B. Steffes, J. Heinlin, S. Karrer, W. Stolz. Clin. Plasma Med., 1 (1), 19 (2013). DOI: 10.1016/j.cpme.2012.11.001
- T. Shimizu, Y. Ikehara. J. Phys. D: Appl. Phys., 50 (50), 503001 (2017). DOI: 10.1088/1361-6463/aa945e
- S. Arndt, A. Schmidt, S. Karrer, T. von Woedtke. Clin. Plasma Med., 9, 24 (2018). DOI: 10.1016/j.cpme.2018.01.002
- T. Shimizu. Jpn. J. Appl. Phys., 59 (12), 120501 (2020). DOI: 10.35848/1347-4065/abc3a0
- V.M. Chepelev, A.V. Chistolinov, M.A. Khromov, S.N. Antipov, M.K. Gadzhiev. J. Phys.: Conf. Ser., 1556 (1), 012091 (2020). DOI: 10.1088/1742-6596/1556/1/012091
- S.N. Antipov, M.A. Sargsyan, M.K. Gadzhiev. J. Phys.: Conf. Ser., 1698 (1), 012029 (2020). DOI: 10.1088/1742-6596/1698/1/012029
- S.N. Antipov, M.Kh. Gadzhiev, M.A. Sargsyan, D.V. Tereshonok, A.S. Tyuftyaev, D.I. Yusupov, A.V. Chistolinov, A.G. Abramov, A.V. Ugryumov. Phys. Scr., 98 (2), 025604 (2023). DOI: 10.1088/1402-4896/acae65
- S.N. Antipov, V.M. Chepelev, M.K. Gadzhiev, A.G. Abramov, A.V. Ugryumov. Plasma Phys. Rep., 49 (5), 559 (2023). DOI: 10.1134/S1063780X23600299
- D.A. Mansfeld, A.V. Vodopyanov, S.V. Sintsov, N.V. Chekmarev, E.I. Preobrazhensky, M.E. Viktorov. Tech. Phys. Lett., 49 (1), 36 (2023). DOI: 10.21883/TPL.2023.01.55345.19384
- I.A. Ivanov, V.N. Tikhonov, A.V. Tikhonov. J. Phys.: Conf. Ser., 1393 (1), 012042 (2019). DOI: 10.1088/1742-6596/1393/1/012042
- A.V. Chistolinov, R.V. Yakushin, M.A. Sargsyan, M.A. Khromov, A.S. Tyuftyaev. J. Phys.: Conf. Ser., 1394 (1), 012006 (2019). DOI: 10.1088/1742-6596/1394/1/012006
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.