Reducing the effect of external magnetic fields on the operation of a gas-filled neutron tube
Mamedov I. M.1,2, Maslennikov S. P.1,2, Solodovnikov A. A.3, Presnyakov A. Yu.1
1Dukhov All-Russia Research Institute of Automatics, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
3Moscow Institute of Physics and Technology (State University), Moscow, Russia
Email: schildkrote5552@yandex.ru
The results of studies of the operating modes of ion Penning sources in the composition of small-sized gas-filled neutron tubes under the influence of external magnetic fields arising during the operation of logging equipment due to the intrinsic magnetization of casing strings are presented. According to the research results, it is shown that the greatest negative effect on the operation of neutron generators is exerted by a transversely directed external magnetic field. Based on the data obtained, options for constructing a shielded magnetic neutron tube system are proposed, taking into account the design features of the generator elements and the robust housing of the well geophysical research equipment. Measurements of the pressure dependences of the amplitude and delay of the pulse for shielded Penning ion sources have confirmed their effectiveness in improving the stability of neutron generators. Keywords: Penning ion source, gas-filled neutron tube, pulsed neutron generator, well-logging equipment.
- V. Valkovic. 14 MeV Neutrons. Physics and Applications (CRC Press Taylor\& Francis Group, Boca Raton, London, NY., 2016)
- E.B. Hooper. A Review of Reflex and Penning Discharges, in Advances in Electronics and Electron Physics (Academic Press, NY., 1969), v. 27, p. 295-343
- F.M. Penning, J.H.A. Moubis. Physica, IV (11), 71 (1937)
- X. Zhou, J. Lu, Y. Liu, X. Ouyang. Nuclear Inst. and Methods in Phys. Research, A 987, 164836 (2021). DOI: 10.1016/j.nima.2020.164836
- X. Zhou, Y. En, J. Lu, Y. Liu, K. Li, Zh. Lei, Zh. Wang, X. Ouyang. Instrum. Experimental Techniq., 63 (4), 595 (2020). DOI: 10.1134/S002044122004020X;
- W. Liu, M. Li, K. Gao, D. Gu. Nuclear Instrum. Methods in Phys. Research, A768, 120 (2014). DOI: 10.1016/j.nima.2014.09.052
- A. Fathi, S.A.H. Feghhi, S.M. Sadati, E. Ebrahimibasabi. Nuclear Instrum. Methods in Phys. Research, A 850, 1 (2017). DOI: 10.1016/j.nima.2017.01.028
- N.V. Mamedov, A.S. Rohmanenkov, V.I. Zverev, S.P. Maslennikov, A.A. Solodovnikov, A.A. Uzvolok, D.I. Yurkov. Rev. Sci. Instrum., 90, 123310 (2019). DOI: 10.1063/1.5127921
- F.K. Chen. J. Appl. Phys., 56, 3191 (1984)
- A. Zhang, D. Li, L. Xu, Z. Xiong, J. Zhang, H. Peng, Q. Luo. Phys. Rev. Accelerators and Beams, 25, 103501 (2022). DOI: 10.1103/PhysRevAccelBeams.25.103501
- S. Lei, Q. Mu-Yang, X. Kun-Xiang, Li Ming. Acta Phys. Sinica, 62 (17), 175205 (2013). DOI: 10.7498/aps.62.175205
- D.S. Stepanov, A.P. Skripnik, E.Ya. Shkolnikov. Atomic Energy, 128 (5), 318 (2020). DOI: 10.1007/s10512-020-00694-4
- E. Burns, G. Bischoff. AIP Conf. Proc., 392, 1207 (1997). DOI: 10.1063/1.52633
- P. Bach, H. Bernardet, V. Stenger. Operation and life of SODITRON Neutron Tube for Industrial Analysis, in J.L. Duggan, I.L. Morgan (Eds.). Application of Accelerators in Research and Industry (AIP Press, NY., 1997), p. 905-908
- M. Mahjour-Shafiei, H. Noori, A.H. Ranjbar. Rev. Sci. Instrum., 82, 113502 (2011). DOI: 10.1063/1.3658201
- B.K. Das, A. Shyam. Rev. Scientific Instrum., 79, 123305 (2008). DOI: 10.1063/1.3054268
- A. Sy, Q. Ji, A. Persaud, O. Waldmann, T. Schenkel. Rev. Scientific Instrum., 83, 02B309 (2012). DOI: 10.1063/1.3670744
- M.S. Lobov, I.M. Mamedov, N.V. Mamedov, A.Yu. Presniakov, V.I. Zverev, D.I. Iurkov. Tech. Phys., 68 (6), 726 (2023). DOI: 10.21883/JTF.2023.06.55602.16-23
- A.D. Liberman, F.K. Chen. Proc. SPIE, 2339, 188 (1995)
- Yu.N. Barmakov, E.P. Bogolyubov, V.V. Miller, Yu.G. Polkanov, V.I. Ryzhkov, I.A. Titov. Karotazhnik, 10-11, 175 (2006) (in Russian)
- D.I. Yurkov, E.P. Bogolyubov, V.V. Miller, S.I. Kopylov, G.G. Yatsenko, F.Kh. Enikeeva, L.A. Magadova, Z.R. Davletov, V.Yu. Solokhin, A.F. Shaimardarov. Karotazhnik, 9, 77 (2013) (in Russian)
- R.S. Rachkov, A.Yu. Presnyakov, D.I. Yurkov. At. Energy, 126 (6), 383 (2019)
- R.S. Rachkov, A.Yu. Presnyakov. Yad. Fiz. Inzh., 7 (2), 162 (2016) (in Russian)
- G.V. Smirnitskaya, Nguyen Huu Ti. Vestn. Mosk. Gos. Univ., 1, 3 (1969) (in Russian)
- E.M. Reikhrudel', G.V. Smirnitskaya, G.A. Egiazaryan. Zh. Tekh. Fiz., 43, 130 (1973) (in Russian)
- E.M. Reikhrudel', G.V. Smirnitskaya, Nguyen Huu Ti. Zh. Tekh. Fiz., 39, 1052 (1969) (in Russian)
- Yu.E. Kreindel'. Plazmennye istochniki elektronov (Atomizdat, M., 1977), p. 144 (in Russian)
- N.V. Mamedov, S.P. Maslennikov, A.A. Solodovnikov, D.I. Yurkov. Plasma Phys. Reports, 46 (2), 217 (2020). DOI: 10.1134/S1063780X20020063
- N.V. Mamedov, A.V. Gubarev, V.I. Zverev, S.P. Maslennikov, A.A. Solodovnikov, A.A. Uzvolok, D.I. Yurkov. Plasma Sources Sci. Technol., 29, 025001 (2020). DOI: 10.1088/1361-6595/ab6758
- S.P. Maslennikov, I.M. Mamedov. At. Energy, 133 (1), 54 (2022)
- N.V. Mamedov, A.S. Rohmanenkov, A.A. Solodovnikov. J. Phys. Conf. Ser., 2064, Art.N. 012039 (2021). DOI: 10/1088/1742-6596/2064/1/012039
- A.V. Sy. Advanced Penning-Type Source Development and Passive Beam Focusing Techniques for an Associated Particle Imaging Neutron Generator with Enhanced Spatial Resolution (Diss. California, 2013)
- E.T. Kucherenko, V.A. Saenko. Zh. Tekh. Fiz., 37 (1), 112 (1967) (in Russian)
- N.V. Mamedov, S.P. Maslennikov, Yu.K. Presnyakov, A.A. Solodovnikov, D.I. Yurkov. Tech. Phys., 64 (9), 1290 (2019). DOI: 10.1134/S1063784219090081
- N.V. Mamedov, A.S. Rokhmanenkov, I.A. Kan'shin, S.P. Maslennikov, M.S. Lobov, A.A. Solodovnikov. Mater. Technol. Des., 5 (4(14)), 42 (2023) (in Russian). DOI: 10.54708/26587572_2023_541442
- N. Mamedov, D. Prokhorovich, I. Kanshin, A. Solodovnikov, D. Kolodko, I. Sorokin. AIP Conf. Proceed., 2011, 080006 (2018). DOI: 10.1063/1.5053361
- A.N. Dolgov, V.G. Markov, A.A. Okulov, D.E. Prokhorovich, A.G. Sadilkin, D.I. Yurkov, I.V. Vizgalov, V.I. Rashchikov, N.V. Mamedov, D.V. Kolodko. Usp. Prikl. Fiz., 2 (3), 267 (2014) (in Russian)
- I.A. Kanshin, A.A. Solodovnikov. Instrum. Experimental Techniq., 63 (3), 315 (2020). DOI: 10.1134/S0020441220030112
- N. Mamedov, D. Prokhorovich, D. Yurkov, I. Kanshin, A. Solodovnikov, D. Kolodko, I. Sorokin. Instrum. Experimental Techniq., 61, 530 (2018). DOI: 10.1134/S0020441218030223
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.