Phase-field model of growth and dissolution of stoichiometric phase in binary solution
Korobeynikov S. A.
1,2, Lebedev V. G.
2, Ladyanov V. I.
21Udmurt State University, Izhevsk, Russia
2Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: sa.korobeynikov@yandex.ru
The phase-field approach for describing the growth and dissolution of a phase of constant composition in a binary solution is considered. The relaxation equations for the phase field and impurity concentration in the phase of variable composition, taking into account the thermodynamic properties of compounds, are derived from the condition of non-decreasing Gibbs energy. It is demonstrated that the equations derived from the principles of nonequilibrium thermodynamics and the law of conservation of matter in volume imply the existence of two mechanisms of growth and dissolution of stoichiometries. The model permits the use of an arbitrary binary system with stoichiometries. For purposes of verification, the Si-Ti binary system, described by the experimentally calculated Gibbs energies of the phases, has been employed. A one-dimensional numerical simulation of the phase transition process under different initial conditions has been conducted, exhibiting qualitative agreement with the anticipated behaviour of the melting-solidification processes. Keywords: binary solution, Gibbs energy, melting, solidification, phase transition.
- V.V. Myl'nikov, A.I. Pronin, M.V. Myl'nikova, E.A. Romanova. Tech. Phys., 68 (1), 26 (2023). DOI: 10.21883/TP.2023.01.55436.218-22
- D.M. Herlach, P.K. Galenko, D. Holland-Moritz. Metastable Solids from Undercooled Melts (Elsevier, Amsterdam, 2007)
- R. Naraghi, M. Selleby, J. Angstrem gren. Calphad, 46, 148 (2014). DOI: 10.1016/j.calphad.2014.03.004
- Y. Zheng, F. Wang, C. Li, J. Cheng, Y. Li. Mater. Sci. Engineer. A, 715, 194 (2018). DOI: 10.1016/j.msea.2018.01.001
- J.E. Spinelli, M.V. Cante, N. Cheung, N. Mangelinck-Noel, A. Garcia. Mater. Sci. Forum, 636--637, 465 (2010). DOI: 10.4028/www.scientific.net/msf.636-637.465
- A. Roy, A. Luktuke, N. Chawla, K. Ankit. J. Electronic Mater., 51 (7), 4063 (2022). DOI: 10.1007/s11664-022-09643-2
- A. Kunwar, J. Hektor, S. Nomoto, Y.A. Coutinho, N. Moelans. Intern. J. Mechan. Sci., 184, 105843 (2020). DOI: 10.1016/j.ijmecsci.2020.105843
- V.I. Lad'yanov, S.G. Men'shikova, A.L. Bel'tyukov, B.B. Maslov. Bull. Russ. Acad. Sci. Phys., 74, 1176 (2010). DOI: 10.3103/S1062873810080423
- LVMFlowCV | NovaFlow \& SolidCV. --- URL: https://lvmflow.ru/ (date of app 07.03.2024)
- M. Hillert. Phase Equilibria. Phase Diagrams and Phase Transformations (Cambridge University Press, NY., 2008)
- S.Y. Hu, J. Murray, H. Weiland, Z.K. Liu, L.Q. Chen. Calphad, 31 (2), 303 (2007). DOI: 10.1016/j.calphad.2006.08.005
- H. Miura. Phys. Rev. E, 98, 023311 (2018). DOI: 10.1103/PhysRevE.98.023311
- V.G. Lebedev. JETF Lett., 115 (4), 226 (2022). DOI: 10.1134/S0021364022040075
- D. Kessler. J. of Crystal Growth, 224 (1-2), 175 (2001). DOI: 10.1016/S0022-0248(01)00814-4
- D. Jou, J. Casas-Vazquez, G. Lebon Extended Irreversible Thermodynamics (Springer, NY., 2010)
- A.A. Wheeler, W.J. Boettinger, G.B. McFadden. Phys. Rev. A, 45 (10), 7424 (1992). DOI: 10.1103/PhysRevA.45.7424
- I. Ansara. Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys: COST 507. Vol. 2: Thermochemical Database for Light Metal Alloys (Publ. of the Europ. Communities, Luxembourg, 1998)
- C.S. Nguyen, K. Ohno, T. Maeda, K. Kunitomo. ISIJ International, 57 (9), 1491, (2017). DOI: 10.2355/isijinternational.ISIJINT-2017-054
- P. Gustafson. Scandinavian J. Metallurgy, 14, 159, (1985)
- D. Goldberg, G.R. Belton. Metall Trans, 5 (7), 1643, (1974). DOI: 10.1007/BF02646337
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.